Sleep Debt: The Hidden Costs

Everyone has a sleep bank. Each night your accounts get credited with 7-8 hours of the physical and mental benefits of sleep and each day the accounts pay out those benefits in the form of emotional, intellectual and physical energy. Just like in any bank account, withdrawals can’t exceed deposits without incurring debt. Sleep debt, though, is easy to ignore because physical activity keeps alertness high. As long as you move around instead of reading or watching TV, you won’t nod off and you can keep thinking that 5 or 6 hours of sleep a night meets your needs. But covering the debt with activity is like keeping a bank balance out of the red by borrowing money and paying interest. Sleep debt exacts a toll on the body that goes beyond depressed mood, irritability and lack of ability to concentrate and learn, not to mention the potential for causing motor vehicle accidents.

The biological clock

As sleep debt mounts, the body’s biologic clock goes awry. This clock, located deep in the brain, controls circadian rhythms – regular ups and downs in behavior, body temperature, appetite, hormone production, alerting mechanisms, and the urge to sleep. When the clock malfunctions chronically, the results show up in the form of weight gain, high blood pressure, diabetes and diminished immunity to infection.

Setting the clock

Regular periods of darkness are required to set the brain’s internal clock to keep the body in synch with the 24-hour day set by the sun. Sleep researchers have shown that, when living in a research setting where there are no external clues about time of day or night, subjects’ internal clocks actually work on a 25-hour cycle. Normal peaks of sleepiness and alertness work themselves into the wrong time of the  24-hour day and night outside the sleep lab, producing weeks of daytime sleepiness and nighttime insomnia in the research subjects. Over time, the peaks cycle back into synchrony with day and night producing several weeks of normal daytime alertness and nighttime sleepiness.

Laboratory settings may exaggerate these patterns, but most people know that during some weeks they simply perform better during the day and sleep better at night  than during other weeks, indicating that in the modern, artificially lit world, the 24-hour day is more like a 24-25 hour day as far as the body’s natural rhythms are concerned. This clock drift is very sometimes very evident. Cyclical insomnia and daytime sleepiness are in common in blind people, in people at very high latitudes where the summer sun circles the sky for almost 24 hours, and in shift workers who are up all night in brightly lit environments. These problems, while distressing, respond to maintaining regular sleeping schedules and closing out all light during sleep periods, which resets the clock.

Why the clock matters

The internal clock is easily disrupted by one or two day episodes of sleep deprivation that people experience for reasons as varied as extra work loads, exams, brief periods of emotional upheaval, or any of the other myriad problems that keep people awake, but studies have repeatedly demonstrated that a few days of “catching up” on sleep restore the body to normal rhythms, contributing to a widely held impression that sleep deprivation, while responsible for serious accidents, doesn’t cause real health problems.
However, bigger problems do come from disturbing circadian rhythms more chronically. In recent years research attention has shifted from short term sleep deprivation to the chronic, partial sleep deprivation that is so common in our modern society, where nodding off during monotonous and sedentary activities like reading or watching TV are almost expected. Many people think they need no more than 5-7 hours of sleep at night, but while a few truly short sleepers exist, most people require around 8 hours of sleep each night to achieve maximal alertness throughout the day. Chronically shortchanging sleep by even an hour a day changes the timing and levels of multiple hormones, causing other metabolic changes and weakening the immune system.

Lack of sleep wreaks havoc on hormones

One of the first hormonal changes produced by chronic short sleep involves cortisol, the stress hormone produced by the adrenal gland. Normally cortisol levels decline during late evening hours, but without enough sleep, production continues unabated, Cortisol then begins to contribute to immune stress and to insulin resistance, which leads to diabetes and fat deposition. A second contributor to insulin resistance is a change in growth hormone secretion from one large burst during sleep to two, smaller bursts before and after sleep. A third change comes from failure of the pituitary gland to produce its normal night-time rise in thyroid stimulating hormone, the stimulus for the thyroid gland to produce more thyroid hormone. All of these changes are consistent with the fact that as little as one week of 4 hour sleeping nights can convert healthy young people to a pre-diabetic state. Observational studies do show higher rates of diabetes in chronically sleep-deprived women.

Lack of sleep and obesity

If these hormone changes are not enough to convince a short sleeper to turn out the lights earlier, studies on the appetite influencing hormones leptin and ghrelin, produced by fat tissue and the stomach respectively, might help. Leptin, which signals when to stop eating, diminishes markedly after 6 days of four- hour sleeping nights, despite no change in caloric intake. Ghrelin, which stimulates appetite, particularly for high carbohydrate foods, goes up when sleep is short.

Sleep debt is all around you

    All of these hormonal factors are significant in society where people lead overscheduled lives in stimulating, loud and bright environments without regard to natural day and night. We do not need sleep studies to tell us that we are in an age of significant sleep debt – just count the number of people, including children, asleep on planes and buses, over books and newspapers, and on couches in front of TVs. If you fall asleep regularly under these circumstances, you are in chronic sleep debt. Given the increase in obesity and diabetes over the last few decades, sleep is another potential therapeutic avenue – a fruitful and inexpensive area of health over which we have considerable control.

Managing the sleep budget: factors under your control

Environmental
1. Take the television out of the bedroom.
2.Darken the room completely, or wear a comfortable, opaque eye mask.
3. If noise is a problem were soft ear plugs.
4. Keep the temperature low at night and invest in a comfortable mattress that does not move.

Behavioral
1. Keep the biologic clock in sync with the sun by getting outside regularly.
2. Get regular exercise like walking, but avoid exercise in the last 3-4 hours before bedtime.
3. Keep naps short – 45 minutes or so – and confined to early afternoon hours.
4. Avoid heavy meals and alcohol in the last 4 hours before sleep.
5. Aim for the same bedtime every night, well before midnight, and develop a quiet bedtime ritual

Internal factors
1. Empty your bladder right before getting in bed.
2. Seek medical treatment for heartburn if causes frequent awakening. Ditto for urination.
3. Evaluation for sleep apnea is a must for someone who snores and suffers from daytime sleepiness.
4. Treatment of arthritis with exercise, physical therapy and medications, if necessary.
5. Try to get weight down to normal: sleep apnea, heartburn, and arthritis pain all benefit

Consciousness Unplugged*

 

Turn on the bedside lamp. Arrange the pillows. Settle in with a book in progress and open to last night’s marked page. Recognize nothing. Memory for those parts read as sleep stole over you never formed.

Go back a page or two…ahh! Here is something familiar. Start there. All is smooth for a page or two. Then the pace slows. The distance between words and meaning lengthens and a struggle to understand begins.  Time slows and suddenly the still visible words no longer symbolize anything. This second, or fraction of a second, marks the border of an elusive state in which the self stands apart, still awake and aware, but disconnected from the machinery it normally uses. Catching the sensation, without slipping into the oblivion of sleep, is like being suspended in time and separated from all the meanings automatically assigned to what is seen, heard and felt in the real world – yet the world is still here.

Sleep steamrolls the elusive state almost instantly, but, while it lasts, it is a fascinating sense of “being,” poised between two worlds. One is the world of the bedroom, the light, the book, the sheets, and the surrounding walls. The other is a world detached from the meanings of all those familiar, objective things. I suspect, but do not know for sure, that this thin little membrane between wakefulness and sleep is the target area of people who are skilled in meditation and of  contemplatives who seek a spiritual connection between themselves and something outside nature.

Imagine being able to hang in the in-between place, without succumbing to the all-powerful tide of sleep, yet to be detached from the cold, hard world of the surrounding room and also aware that you are still you. Reports from skilled seekers of enlightenment, from faithful meditation practitioners and from some of the great religious traditions of wisdom suggest that exploration of consciousness unplugged from its routine state might be rewarding.  And for some reason, physical health benefits like lower blood pressure and more even moods come back from that place.

There is real appeal, too, in  personal experience that lends credence to the idea that there is more to each of us than $5.00 worth of raw materials – that some part of us rises above the chemistry.  My Stroke of Insight, Jill Bolte Taylor’s first person description of her expansive trip through her own brain while in the middle of a stroke, rocketed around the internet not because of its neuroanatomy and physiology, but because it added to the hope that the human creature is more than an animal. The hope that the nagging sense of otherness, the need to be good and to do good things, the ability to imagine, the drive to create art and music, and the love of symmetry and beauty reflect more than random biologic events culled out of DNA by the drive to survive.

When I was a child I tried to hold myself poised in another early phase of sleep – the one in which vivid imagery parades across the inner screen – in my case it was always from left to right. The images were always complex, detailed and colorful –unrelated by any story line, and not necessarily imagery form any of my real-life experiences. Elephants decked out in magnificent jeweled saddles and the like. The trick was to not pay them too much attention, or I would be back up in wakefulness, but also to pay them just enough that I would not fall into the sleep pit.

Adulthood put an end to the drifting mode of getting into sleep. Busy days and chronic sleep deprivation made cliffs out of the previously gentle slopes surrounding the sleep pit. No more lollygagging into unconsciousness.  But I suspect those childhood experiences were the beginning of my unshakeable sense that the watcher of these fascinating states of consciousness, as well of dreams, is the deepest part of the self – a part that can be unplugged from the $5.00 body.  The partial unplugging that precedes sleep is fun. The complete unplugging that comes at the end of life? I suppose it depends on what you believe. Is there something else? Is there nothing else? No way to know for sure. But I would not like to experience a persistent, conscious sense of self in a void. That might be hell.

*this was not written for an Elks Magazine Healthline column.

Carpal Tunnel Syndrome

 

Wrist splints are common sights. You see them on cashiers and typists, on hairdressers and bank tellers. They reflect the frequency of a problem called carpal tunnel syndrome. The carpal tunnel is an anatomical structure inside the palm of the hand at its base, and the syndrome is a collection of symptoms related to the nerve that passes through the tunnel on its way from the forearm to the hand.  The nerve is the median nerve, and it is accompanied by nine tendons that connect the muscles of the forearm to the fingers.   At times, lack of space puts pressure on the median nerve, causing aching pain in the wrist, forearm and even upper arm, and numbness or tingling in the thumb, index, third and the half of the ring finger closest to the thumb. With enough pressure the thumb muscles weaken and shrink.  Any combination of these symptoms, when caused by pressure on the median nerve in the hand, adds up to carpal tunnel syndrome.

Nerves tell you they are in trouble

Pressure on nerves that run close to the surface of the body slows conduction of the electrical impulses that carry sensory information about pain, temperature, position and touch. When your foot or arm “falls asleep,” the culprit is pressure on the nerves that carry sensory information. Pressure symptoms from the median nerve in the base of the hand are so common that many people experience them transiently when they grip a steering wheel tightly over a long period of time, or pound or push with the base of the hand. Instinctively, they respond to the feeling of fingers tingling or going to sleep with re-positioning or shaking of the hand. Only when pressure is sustained do nerves become damaged enough to cause the muscles they supply to weaken. The median nerve is a common site of chronic pressure because of the anatomy of the tunnel it must pass through to the hand.

Tunnel anatomy

The roof of the carpal tunnel is an arch of bones at the base of the hand.  The floor is a horizontal span of several tendons and ligaments between the bones on the thumb side and the little finger side of the hand. The bony arch changes shape with hand movements, especially with bringing the thumb across to the little finger side, flexing the wrist and extending the wrist.

Who gets carpal tunnel syndrome?

Because the carpal tunnel is smaller in women than in men, they are more frequently affected by symptoms from pressure on the median nerve, particularly during pregnancy when hands commonly swell.  Some medical conditions like heart or kidney failure, diabetes and growth hormone producing brain tumors may cause pressure to increase in the carpal tunnel. Inflammatory conditions like rheumatoid arthritis may also bring out symptoms. While carpal tunnel syndrome seems common in people whose occupations involve repetitive hand motions or hand pressure, such as hairdressers, typists, bakers, and jackhammer operators, rigorous studies do not fault the activities alone, but the activities combined with the individual anatomic structure, and with underlying medical conditions,  if present.

The reason for those wrist splints

Since the anatomy of the hand is responsible for carpal tunnel syndrome, relief comes from maximizing the space between the ligaments and bones. When symptoms begin, the first line of treatment is a splint that keeps the wrist aligned in a neutral position – neither flexed nor extended. It also keeps the thumb from falling in toward the ring finger. The splint’s design allows for use of the fingers and thumb and it can be worn during most activities. The crucial time for keeping it on is during sleep. When we sleep our hands naturally fall into a posture of wrist and finger flexion, and some people exaggerate this pose by tucking their hands beneath them, and even unconsciously clenching them.  Hand position at night often brings carpal tunnel symptoms to light, especially aching in the forearm, and tingling in all the fingers except the pinky.

Stretching the tunnel

Stretching the base of the hand during the day is also helpful. One good stretch is accomplished by  placing the hand flat on a wall at about shoulder height, turning the body perpendicular to the wall and stepping far enough away to straighten the elbow as much as possible. Then rotate the “eye” of the elbow, its inner bend, up to face the ceiling as much as possible. Hold the stretch for up to thirty seconds at a time.

Advil doesn’t change the anatomy

Anti-inflammatory drugs like Advil can help reduce swelling of tendon sheaths if the problem with the hand is related to injury or an underlying inflammatory condition like rheumatoid arthritis, but chronic use of anti-inflammatory drugs has not been shown to help typical, uncomplicated carpal tunnel syndrome.

When conservative measures fail

If conservative measures like splinting and stretching do not resolve carpal tunnel symptoms, surgery to expand the canal is generally successful. Some surgeries are performed through a small incision, using a scope and tools inserted directly onto the tunnel to cut away the connective tissue surrounding the nerve and tendons. Other cases require an open incision in the palm.

Diagnosis

Diagnosis of carpal runnel syndrome is relatively easy from the history alone. Conservative measures can be attempted without any other tests, provided that there are no underlying medical conditions suspected to be causing the symptoms. However, if conscientiously applied conservative measures fail, or if there is muscle weakness at the time of diagnosis, then a test called a nerve conduction study and electromyogram (EMG) will almost always confirm the diagnosis. The pressure on the nerve in the carpal tunnel causes a current applied to the nerve to be delayed in its passage to the hand, easily picked up in the nerve conduction study. Tiny needles that measure activity in the palm of the hand pick up signs of loss of nerve supply to muscles.  Muscle nerve loss does not respond as well to conservative measures as sensory symptoms like numbness and tingling do, so if the EMG demonstrates muscle nerve loss, surgery is usually recommended.

 

 

Your Discs Are Bulging—Does it Matter?

Have you been told that you have bulging, degenerated discs in your spine? If so, you are not alone. Millions of Americans undergo X-rays, CT scans, and MRI scans of their backs and necks each year and receive the same news. As a result, multiple millions of dollars are spent on medications, physical therapies, surgical procedures, and spinal manipulations in an effort to treat back pain. The people undergoing all this diagnosis and treatment might imagine that other, luckier people have normal spinal discs, but they might be surprised to learn that bulging discs are so common that they may be considered a normal part of aging. Most often, they cause no symptoms or problems, and it pays to be cautious about embarking on courses of investigation and treatment based simply on these “degenerative changes.” But it also pays to know when and why discs do cause trouble.

What and where are spinal discs?

The spine is a column of thick, circular bones—also called vertebral bodies—that in terms of anatomy is divided into three major sections: the cervical (neck) spine, thoracic (mid-back) spine, and lumbar (lower back) spine. The vertebral bodies have flat tops and bottoms, and they sit atop one another, separated by discs that cushion the spine and allow for the compression, rotation, and bending of the entire spinal column. The arches of bone on the back sides of each of the vertebral bodies line up with each other to form a bony tunnel, which surrounds the spinal cord and the nerves that connect it to the body. Pairs of these nerves exit from the sides of this canal below each vertebral body.

Spinal discs are a lot like flattened cream-filled doughnuts, with a soft center called the nucleus pulposus and a tougher perimeter called the annulus. Each annulus is attached to the ligaments that run the length of the spine and hold it together. Every day, gravity squeezes so much water out of each disc that an average adult shrinks by more than one-half inch between morning and night. As a disc loses water and flattens, it may protrude beyond the edges of the vertebral bodies located above and below it. Under these conditions, the ligaments bounding the disc tend to bow outward to accommodate the flattening, and the result is the classic “bulging” discs often seen on back scans. Is such bulging a cause of pain?

When bulging becomes cracking and herniation

Judging by the number of people who have bulging discs and no pain, the answer to this question is, not very often. But discs can cause pain if they are damaged. Cracks can develop in the back part of the annulus, especially in the lower neck and lower back, and are sometimes caused by sudden movement or excessive loading of the neck or back or sometimes with no readily identifiable cause. Risk factors for the development of cracks include age, smoking, and heavy weight lifting. When cracks form in the annulus, nerve fibers send out distress signals which feel like deep back pain that sometimes radiates down the legs. Symptoms usually improve over a period of six to eight weeks, but if the tear is extensive enough, it may open a path for part of the soft nucleus pulposus of the disc to work its way through, becoming a so-called herniated or “slipped” disc.

Location determines  symptoms

Extruded far enough, a herniated disc bulges straight backward into the bony tunnel that houses the spinal cord or off to either side, where it squeezes into the narrow canal that should hold only a spinal nerve root passing out to the body. Depending on the location and the extent of the disc herniation, pain in the back or neck might be accompanied by a set of neurological symptoms including numbness, tingling, and a sense of weakness in an arm or a leg. Symptoms may improve over time with no treatment or with relatively modest treatments, like physical therapy or cortisone injections, as the disc shrinks. But there is potential for the worsening of symptoms, so careful physical evaluation and follow-up are important.

More than 95 percent of disc problems occur in the lumbar spine. Here, as in the neck, discs tend to slip off to the side, compressing single nerves and causing pain to run down a leg or arm or weakness in corresponding muscles. Definite loss of strength in a muscle group controlled by the nerve under pressure most often calls for surgery to decompress the nerve. Sometimes scans indicate that a fragment of disc has broken off and lodged itself under a nerve. Unlike nonfragmented disc herniations, which may gradually shrink and relieve symptoms, symptoms caused by fragmented discs tend to be persistent unless the fragment is removed.

Disc herniation in the upper spine

When discs slip straight back into the central spinal canal, symptoms can range from none to neurological deficits that require immediate decompression surgery. Serious central disc herniations are uncommon in the neck and quite rare in the thoracic spine but in both locations may cause symptoms from the spinal cord itself that include pain, balance problems, weakness in the legs, and an inability to control the bladder.

Disc herniation in the lumbar spine

In the lumbar spine, because the spinal cord does not reach down this far, central disc herniations put pressure on the so-called cauda equine, or “horse’s tail” of nerves that travel down the spinal canal from the spinal cord to their exit points at different lumbar levels. Symptoms here often consist of a confusing array of pain, numbness around the groin and legs in a pattern that traces an area where a saddle would make contact with the body, leg weakness, fecal incontinence, and trouble initiating urination. This combination of symptoms requires immediate surgical decompression.

Surgery or not?

While surgery for severe symptoms is an easy decision and while many disc removals are done with microsurgical techniques and small incisions and are less invasive than in the past, the decision to try to improve back pain alone by operating on a bulging disc is not as easy. To improve the likelihood of good results, studies like disc injections are sometimes done. The dye used helps visualize the disc, and, if the injection reproduces the patient’s pain, confidence that the disc is the source of the back pain increases. Injections can be helpful in determining which of several bulging discs might be the source of pain.

Caution in the decision

Disc removal for pain alone or for pain combined with sensory symptoms that come and go should be approached with caution. First, every attempt should be made to improve the strength of the muscles that support and move the spine, to improve overall posture, and to lose excess weight that the spine is asked to support. Back and neck pain arise from many different structures—muscles, ligaments, tendons, bones, and nerves—and can improve dramatically with improved strength, flexibility, and posture—bulging discs or not.

 

Broken Heart Syndrome: The Octopus Trap

“Doctoring her seemed to her as absurd as putting together the pieces of a broken vase. Her heart was broken. Why would they try to cure her with pills and powders?”  Leo Tolstoy, writing about Kitty’s heartbreak over Vronsky in Anna Karenina

 

Sometimes people say that a spouse who dies unexpectedly within hours to weeks after the partner’s death has “died of a broken heart,” though a variety of different medical conditions are responsible for the increased death rate among grieving partners, who are often elderly. In 1990 a paper appeared in the Japanese medical literature that described a peculiar heart problem, documented by modern technology, that the popular press seized upon as a possible explanation for the correlation between grief or fright or other emotional stress and sudden, unexpected death. The cardiomyopathy the authors described was an abnormality in the heart muscle of the left ventricle, the chamber of the heart that pumps blood out to the body. That part of the heart acted as if it had been “stunned” into inactivity and caused pain and other symptoms commonly associated with heart attacks, but the patients did not have any coronary artery disease.  These facts seemed fit neatly into the concept of a “broken heart.”

Why an octopus trap?

The ventriculograms, or dye studies, of the hearts of the Japanese patients described in the 1990 paper showed peculiarly dilated left ventricles, ballooned at their tips so that they resembled octopus traps – narrow-necked, flask-shaped contraptions that are easy for the tentacled animals to enter but hard to escape. In the Japanese language an octopus trap is a takot-subo and by the mid-2000s the name Takotsubo cardiomyopathy, or TCM, was widespread and many more cases had been described. Risk factors for the stress-induced cardiomyopathy were both physical and mental and included stays in ICUs, near drownings, major physical injuries, bad medical or financial news, legal problems and natural disasters, and, of course, unexpected death of a loved one. Cases have also been attributed to cocaine and methamphetamine use, as well as to exercise stress testing. These patients who acted as if they had had a heart attack were most often women and they had no history of heart problems prior to the events that hospitalized them.

Who is at risk? What are the symptoms?

Takotsubo syndrome is not common, but also not rare. It accounts for 1-2% people who have symptoms initially thought to be caused by regular coronary artery disease. In women, some people estimate that as many as 5% of heart attacks are actually TCM.  Most TCM patients are Asians or Caucasian, over 90% are post-menopausal women and most cases come to attention because of heart attack-like symptoms such as acute chest pain and shortness of breath.  But unusual presentations also occur as a result of the effects of the poor heart muscle function. When it’s pump action fails, the heart sends hormonal signals that affect water and salt balance in the body.  Fluid retention occurs in some people. Low sodium levels cause symptoms of profound fatigue in others. Clots may form in the poorly contracting ventricle, break loose and cause strokes. Lethal complications such as ventricular fibrillation and actual rupture of the impaired ventricle are very rare, but have occurred.

What’s the cause?

Diagnosis of Takotsubo syndrome requires new abnormalities in the electrocardiogram, absence of coronary artery disease and no evidence of heart inflammation from an infection or autoimmune disease. While the enzyme markers for a heart attack may rise, they do so earlier and fall back to normal more quickly than they do in a routine heart attack. In addition, the muscle abnormalities in the left ventricle can’t be mapped to the territory supplied by one coronary artery as they can when a blockage is responsible for the damage. Doctors who make a TCM diagnosis must also make certain the patient does not have a tumor called a pheochromocytoma, which produces stress hormones.

Most patients recover completely

By now TCM is known to be transient, with supportive care leading to complete recovery within 1-2 months in over 95%of patients. Recurrence is extremely rare. However, the actual cause, or mechanism by which the transient heart damage occurs, remains unknown. A number of theories have been proposed and all of them have something to do with a temporary derangement in function of the cells of the inside layer of cells of the left ventricular chamber of the heart. In these cells normal energy production from fatty acids is halted. The area of the heart involved happens to have a high concentration of receptors for catecholamines (adrenaline like hormones), perhaps making it susceptible to overstimulation and damage by severe stress. The high preponderance of postmenopausal women in case reports suggests that perhaps sex hormones are somehow protective factors.

Do people really die from broken hearts?

But is the Takotsubo syndrome responsible for deaths that seem to come from emotionally broken hearts? The mortality rate in cases of Takotsubo syndrome that come to medical attention is low. Recovery rates are high. Broken heart deaths most often occur in older people who have multiple health problems which might play a role. For example, when singer/actress Debbie Fisher died as she was planning her daughter Carrie Fisher’s funeral this year, a NYT reporter speculated about the cause of death being the Takotsubo syndrome. But Debbie Fisher had suffered several strokes in recent years and had high blood pressure. Later stories attributed her death to a fatal stroke related to high blood pressure.

Grief and stress do raise the risks of dying for the bereaved, but the causes of death are many and varied and mostly related to longstanding health problems.  The pills and powders Kitty scorned for her broken heart in Anna Karenina have a place in the treatment of the many other problems that occur in the setting of grief, especially depression. While it is tempting to attribute sudden, unexpected deaths in emotionally stressed people to an odd and mysterious heart problem named after an octopus trap, science requires objectivity and evidence.  So far the evidence about sick hearts that resemble octopus traps suggests that, at least in the people in whom the diagnosis is made, death is a very rare outcome and complete recovery is the rule.

Chilly Treatment

Large scale studies of survival after cardiac arrest have produced dismal statistics, with survival to hospital discharge of 17.6% when the patient is already in the hospital at the time of the arrest and only 6.1% when the arrest occurs outside the hospital.  The development and widespread deployment of portable automatic external defibrillators (AEDS) in public places has increased the number of people who make it to the hospital after cardiac arrest.  However, the survivor’s longer term outcome depends in large part on how much brain damage occurs during the arrest and whether or not the restoration of circulation damages the brain further, a phenomenon called reperfusion injury.  Because the odds of initial survival have improved, and because lowering the core temperature of the body appears to lessen reperfusion injury, the subject of hypothermia has emerged as a vibrant area of research and therapeutics.

Therapeutic hypothermia is an old idea

Hippocrates (460-370B.C.) recognized the value of cold temperatures in the outcome of soldiers with head injuries and in people suffering from tetanus. In the 1800s, Napoleon’s surgeon used ice to prepare limbs for amputation because it numbed pain and reduced bleeding. Over much of history, miraculous recoveries were reported in victims of cold water submersion. But not until the late 1950s did therapeutic hypothermia become a routine part of some surgical care, when experiments in animals demonstrated its value in protecting the brain during the open-heart surgery.  Despite some attempts to cool patients for other problems such as cardiac arrest, strokes and head injuries, the number of problems encountered in during cooling and in the re-warming phase put a damper on the use of the technique. Now, however, we are in the middle of a revival of interest in therapeutic hypothermia.

How does cold help?

Cold protects the brain because the biochemical reactions that sustain life are influenced by temperature. If the heart stops, the brain runs out of fresh supplies for energy production in two minutes. A downward spiral toward brain cell death begins unless blood flow is restored within the next two minutes. When blood flow is restored (reperfusion), a cascade of potentially damaging chemical reactions begins in cells that have been deprived of oxygen. The longer the period of arrested circulation was, the more damaging these reactions are.

The body at different temperatures

Changing the body’s temperature changes the speed and efficiency of its chemical reactions.  At temperatures over 105 many processes fail completely. As body temperature falls below normal, chemical reactions slow down.  Between 92 and 89.6  the damaging chemical responses that come after blood flow returns are blunted enough to improve outcomes significantly.  By 90, pulse and respirations slow and peripheral circulation shuts down. By 86 the patient may still be alive, but looks dead. This level of deep hypothermia is used for some long, difficult cardiac and neurosurgical procedures.

Lowering temperature is now routine, sometimes

Since 2005, the American Heart Association has recommended therapeutic hypothermia as a routine part of patient care after a cardiac arrest in circumstances that depend on the reason for the cardiac arrest, the speed of the resuscitation, and the state of the patient after circulation is restored.  Some medical centers are also experimenting with the technique in the treatment of certain types of strokes and head injuries.

How do you lower someone’s core temperature?

How do you cool a body that normally maintains a constant temperature that hovers within a few tenths of a degree of 98.6?  Any environment with a temperature less than body temperature provides a gradient for heat loss.  Deliberately making someone hypothermic means increasing that temperature gradient. In the presence of a gradient, heat radiates away from the body. Heat is also conducted away when the body is in contact with any colder substance; when the colder substance such as air or water is in motion, heat is lost even faster, by convection.  Heat is also drawn away by evaporation of perspiration on the skin’s surface, where the sweat keeps the microclimate humidity at 70% even when you think you are dry.   Heat also dissipates when warm moist air is exhaled from the lungs.

Several internal and external ways of changing the temperature gradient  exist: ice packs applied to the head, neck, axillae, groin, where large blood vessels are close to the surface; cooling blankets that house cold water circuits; closed catheters through which cold saline circulates inserted into large blood vessels; ice water balloons in the bladder.    These methods are directed at the core temperature of the body – the temperature of the internal organs and the brain. They do not cause problems like frostbite, seen commonly with accidental hypothermia, because the ambient temperature is not freezing and the skin is protected from direct exposure to ice packs being used for cooling.

The body resists lowering the temperature

Normally, we protect ourselves from falling temperatures by putting on more clothes and increasing activity, and by shaking and shivering, which produce heat.  A patient who has suffered a cardiac arrest will not engage in the normal behavioral responses, but he will shiver and perhaps become agitated, both of which are counterproductive to getting the temperature down. Sedation and even muscle paralysis are therefore necessary for the period of cooling.

Despite problems,  therapeutic hypothermia is here to stay

Current therapeutic hypothermia protocols call for maintenance of temperature between 32-34 (89.6-93.2) for 18-24 hours, followed by passive re-warming over the next 24 hours. Overshooting and undershooting of temperature are both common, as are difficulties maintaining electrolyte and sugar balance. Some complications like pneumonia and bleeding problems are more common than in similar patients not being treated with cold temperatures. Much work remains to determine the best timing for induction and maintenance of hypothermia after cardiac arrest, but it is clear that “the sooner the better” is the general rule and that the revival of interest in therapeutic hypothermia is here to stay.

The Latest on Charley Horse: How Muscle Cramps Work

No one knows for certain how “charley horse” became a name for muscle cramps.  Baseball lore from the late 1800s links the term to a player named Joe Quest, who may or may not have compared his cramp-prone teammates to an old, stiff-legged white horse named Charley who pulled heavy loads in his father’s machine shop in New Castle PA. The first newspaper story using the term charley horse in the context of players who pulled up with thigh cramps was allegedly the Chicago Tribune, during Quest’s 1879-1882 stint with the Chicago White Stockings. The first retrievable story using the term, in the Boston Globe in 1886, referred to the Tribune story as the origin of the name. By that time, Quest was with the Philadelphia Athletics and at the end of his career, but the off-hand description he may or may not have coined has become a household word, spread far beyond the world of baseball.

What is a muscle cramp?

Muscle cramps of are involuntary, intense and painful contractions which harden the muscle and last seconds to minutes. Aching pain and even chemical indications of muscle damage may persist much longer.  Electrical recording of muscle activity during cramping and between bouts of cramping indicates that the baseline or normal amount of electrical activation of the muscle is increased – maybe a measurable correlate of the feeling that a muscle is “about to cramp.”

Theories about cramps

Long-held theories have blamed muscle cramps on dehydration, electrolyte losses from sweating, extreme environmental conditions of heat and cold, or inherited problems of energy production. In addition, cramps happen more in people taking some medications some medications such as cholesterol lowering drugs and diuretics. While these factors may play supporting roles, they do not explain the mechanism of cramping. Nor do they explain why stretching, as well as folklore-based remedies like the Amish combination of vinegar, ginger and garlic, or consumption of pickle juice, mustard or hot peppers help cramps. Newer, “neural” theories about the mechanism of cramping, which implicate feedback loops between muscle and the spinal cord, might account not only for exercise related cramps but also for and the kind that grab hold of a leg as you roll over in bed.  And they might explain the seeming success of peculiar remedies. To understand the neuromuscular feedback loops we must diverge briefly into a little muscle anatomy and physiology.

How your muscles move things

When you decide to lift this magazine, your brain sends a message to motor nerve cells in the spinal cord, the alpha motor neurons, which then fire signals down nerves to the biceps muscle and to all the other muscles are involved in the task, telling some to contract and others to relax.   That is the simple part. The complex part, which goes on in the background at all times, is the feedback from two types of specialized muscle receptors which act much like strain gauges used in civil engineering to detect forces deforming land and buildings.

Strain gauges in every muscle: moderators of muscle tone

One type of muscle receptor strain guage is a muscle spindle. It calculates stretching forces in the belly of a muscle. The other is a Golgi tendon organ, which calculates the stretch in the tendon, the fibrous end of the muscle that attaches to bone.  Muscle spindles send messages to the spinal cord motor cells to fire up and contract the muscle when the muscle lengthens too much. Golgi organs send the opposite message to prevent the tendon from becoming too tight as the muscle contracts. All of this occurs rapidly and constantly, in a balance that keeps your muscles at the right degree of tone for all your movements.

In 1997, researchers suggested that unbalanced feedback from these little muscle strain gauges was the primary cause of cramping.  In fatigued muscle, at least in animal studies, the spindles were more active than normal, and the Golgi tendons less active.  The net result caused alpha motor neurons to fire up the muscle fibers than they usually do. Passive stretching of the muscles, which stretches tendons, woke the Golgi receptors back up, prompting them to send more cease and desist orders to the motor neurons. The cause of cramping thus appeared to be too much spindle input.

Regulation from above

Motor neuron feedback loops also receive input via pathways that originate higher in the nervous system. Swallowing liquids with striking tastes stimulates sensory cells in these spinal pathways, sending messages up to the brain and down through the spinal cord. Cramp researchers speculate that stimulation of these pathways tamps down some of the incoming messages from the muscle spindles, providing an explanation for the efficacy of some old-fashioned cramp remedies.

The well-known tendency of baseball players to suffer cramps might also bolster the neuromuscular feedback theory.  Baseball players wait to explode into motion from crouches, get up from slides to race back to safety after failed base stealing attempts, and stop, start and reverse direction abruptly.  It is easy to imagine some Golgi tendon organs and muscle spindles lulled into altering their feedback and then lagging in adjusting to the abrupt new actions.

Cramps in bed

But what about the cramps that are not associated with the fatigue of exercise? Shortening of the muscle in certain positions, such as lying in bed, may set them up for the same imbalance in input from the stretch receptors. The increasing frequency of cramp problems with age could be a result of general loss of strength and flexibility in muscles that are not used as much as in the past.  The ideal input from muscle stretch receptors occurs in the rested muscle which has maintained its youthful length and flexibility.

Practical application of the latest theory

Practical application of the neuromuscular feedback theory of cramping applies not only to charley horses, but also to musculoskeletal injury prevention in general.  Maintenance of flexibility and balance of strength in opposing muscle groups such as the quadriceps and the hamstrings keeps the spindles and Golgi tendon organs in balance, and muscles which are less stiff and prone to cramping allow movement with less discomfort as life moves on. Such maintenance requires regular work, especially if you want to avoid some of the creeping stiffness of old age.

Note: the muscle receptors and their connections  may well play roles or even be the culprits in some mysterious muscle disorders that are associated with cramping or decreased muscle tone. Muscle research is a blossoming field in this new age of genetic research. All muscles bear the stamp of their genetic makeup in their differing structural proteins. Some people have big bulky muscles, some long slender ones; some have more fast twitch fibers that make them speedy, others more slow twitch fibers that endure for marathons.  And some people are relatively inflexible, others loose and prone to twisting ankles. You get what you get from the usual complement of both parental versions of DNA, in the nucleus of the cells. (But if you want to complain about your speed, blame your mother- she provided all the DNA in the mitochondria which power the cells.)

Fatigue: Gentle Messenger…and Tyrant

As Supreme Court Justice Potter Stewart famously said, when confronted with a decision about what constituted pornography, the definition is hard, but “I know what it is when I see it.” An all-encompassing definition of fatigue is similarly difficult, but everyone knows what fatigue feels like. The profound lassitude that signals an oncoming flu is a gluey, mesmerizing state of mind and body that renders one incapable of remembering ever feeling good, of imagining ever feeling energetic again, or of conceiving of a desire to participate in any physical, social or mental activity beyond crawling beneath the bedcovers.  

The perception of energy failure

 Where there is life, there is fatigue. All plants and animals run on energy produced in little chemical factories (mitochondria) in every cell. The ultimate source of biologic energy is the sun’s nuclear energy, converted to usable form by plants and transferred to animals as food. The more complex the living thing, the more obvious the need for periods of rest and recovery to replenish energy. When the demand energy use outpaces the time needed for recovery, or when normal function is derailed by illness, drugs or toxins, fatigue is the name we give to what we feel, mentally and physically. To the research scientist, fatigue is a by-product of numerous little proteins (cytokines) produced by the immune system to protect us from outside invaders and internal disorders like cancer. How these proteins create the feeling of fatigue is a mystery, but there is admirable logic in a system that commandeers a patient’s energy, drive and ambition and sends him packing off to bed while an internal battle rages.  

Voluntary fatigue

Less admirable is our ability to override the biology that produces tiredness, and to become passive, cranky and sleep-deprived. In fact, most complaints of fatigue reflect the deliberate choice to ignore the symptom and would and yield to simple lifestyle changes – if one were willing and able to sleep more, lose weight, eat regular, well-balanced meals, exercise enough, manage time wisely, avoid smoking, excess alcohol, and junk food, and engage in satisfying work. In our culture these are tall orders, and a background level of fatigue is often accepted as normal. 

Evaluation of fatigue 

New, unexpected and persistent tiredness, however, may signal underlying illness or environmental stress and warrants a serious evaluation, with clear communication about exactly what fatigue means to the patient. First, a description of the patient’s normal “background energy” is important. Some people are full of energy from the day they are born. Others are inveterate couch potatoes, happy to sit and watch life go by. The feeling of fatigue that prompts one to see a doctor is, by definition, different from the patient’s normal state, but the doctor sees only a snapshot in time. Patients and families should never be shy about volunteering information about what life used to be like. 

Defining the symptom

Next, the language used by patients to describe fatigue needs to be clear. “I’m tired” sometimes means “I’m weak,” and “I’m weak” sometimes means “I’m tired,” but in the jargon of medicine, weakness means loss of muscle strength. Provided that they exert full effort, tired people can generate normal muscle power upon request, but people with strokes or nerve and muscle diseases cannot. Separating weakness from fatigue is the doctor’s first job – otherwise he may head off on the wrong diagnostic road. Description of the activities affected by tiredness and/or weakness, and characterization of changes fatigue brings to daily life are crucial to the process of diagnosis.   

Finding the source

Once a doctor understands the way fatigue affects life for a patient, he moves on to a “review of systems” – a top to bottom list of questions ranging over all the body’s organs, looking for clues to the presence of heart, kidney or liver disease, diabetes, cancer, sleep apnea, restless leg syndrome, insomnia, degenerative neurologic diseases like Parkinson’s, autoimmune illnesses like lupus or MS, chronic infections, eating disorders and problems of the thyroid, adrenal and pituitary glands. A good doctor will then delve into the lifestyle and life events surrounding the appearance of fatigue. Tiredness is a complex, high level symptom that may also originate in the mind – it is one of the cardinal symptoms of depression. 

Is it the drugs

Next comes a careful inventory of all medicines in use, prescription and non-prescription. New fatigue symptoms may parallel the addition of new drugs (even antibiotics can cause fatigue). An inventory of potential toxins and hazards in the environment may turn up a faulty furnace producing carbon monoxide or exposure to toxins such as volatile hydrocarbons that can damage the part of the brain called the cerebellum – a major player in energy balance. 

Following the clues

 Following a good, inquisitive medical history, a complete physical exam (the kind that requires undressing) may turn up other clues that suggest the need for more than “routine” tests. Fatigue is messenger bringing information about conditions ranging from minor to mortal. When not readily explained, fatigue warrants the best of our medical tools to ferret out the source of trouble. The first step though, is still a careful history and physical examination. Without these, advanced medical technological evaluation of fatigue is little better than a fishing expedition sent to sea with no information about where the fish hang out. 

                                                    The Chronic Fatigue Syndrome

Definition:

Profound, life-altering fatigue lasting more than 6 months.

May follow a viral infection, but no test abnormalities persist along with the fatigue.

Physical and mental activities both worsen symptoms.

Variety of accompanying symptoms: weakness, muscle and skeletal aches and pains, impaired memory, lack of drive, poor sleep.

Diagnosis:

No specific tests, other than exclusion of other illnesses that produce these symptoms, among others. CFS is a “diagnosis of exclusion.”

Conditions to be excluded:

Chronic infections, mononucleosis, autoimmune disorders (lupus, M.S.), hypothyroidism, low adrenal function, sleep apnea, cancer (particularly pancreatic), obesity, eating disorders, drug and alcohol abuse, major psychiatric disturbances: schizophrenia, depression. 

                          A Balanced Life

Humpty Dumpty sat on a wall,


Humpty Dumpty had a great fall. 


All the king’s horses, 
and all the king’s men,

Couldn’t put Humpty together again.

No one ever said why Humpty fell off the wall. If he’d managed to stay up there, he would have been OK. That’s the way it is with older people with thin bones. Osteoporosis doesn’t make people fall but it makes them break when they do. The real question is why they fall.

Why do older people fall down?
Falling is a risk of age because balance, strength, flexibility and speed decline over time. Even if you have no problems with balance it is worth understanding how balance works – how you maintain an upright posture and adjust to changes in the terrain under your feet, and how you manage to catch yourself and not fall as your foot slips on an icy path. The good news is that “use it or lose it” applies to balance, strength, flexibility and speed. You have some say in their preservation.

The systems that create balance

Your sense of balance comes from the integration of messages from muscles and joints, eyes and ears. Try experimenting and you’ll feel how these sensations contribute to balance. First, stand on one leg. Then try doing it with your eyes closed. Then try doing it after spinning around in a circle, and disturbing the fluid in the inner ear. With each maneuver, you subtract some of the sensory input to your brain and make it harder to control the muscle strength and tone needed to keep you upright. Fortunately, we don’t have to “think” about the actions that keep us balanced. They happen automatically.

What happens when the balance systems go awry?

When some part of the entire balance system goes awry, you feel “dizzy” or “lightheaded” or “off” or “tipsy.” The doctor who hears your complaint will ask you questions related to all the components of the balance system, and to all the medical conditions that can disrupt your eyes and ears, your peripheral nerves, your spinal cord, or your brain. He or she may order hearing tests or brain scans, blood tests or electroencephalograms. Patience, careful observation of symptoms, and systematic ruling out of problems is the best approach.

Vertigo

A sense of spinning dizziness, called vertigo, makes balance almost impossible. Vertigo is most frequently the result of an inner ear problem Three semicircular canals deep in each ear lie at right angles to each other and are filled with fluid that moves when you move your head. The fluid stimulates nerves that add information to the balance system. Viruses can affect the ear and produce profound vertigo with even tiny head movements. Some tumors of the nerve to the ear (acoustic neuromas) affect balance and hearing. A benign condition called Meniere’s disease causes episodes of hearing loss and vertigo. Though acute ear problems are sometimes at fault, very often dizziness that comes from the ears is a result of disuse of the inner ear canals. Ears that are unaccustomed to change in position because body movement has become limited and slow no longer cope well with rolling over in bed or turning the head quickly, and such routine activities can make the room spin. This is called benign positional vertigo and the treatment consists of exercises of the head and neck to re-accustom the semicircular canals to movement.

Muscle and joint receptors keep track of the body in three dimensions

Tiny receptors in the muscles and the joints perceive gravitational stress and muscle tension and movement. These receptors tell the brain where the body is and how much muscle tension is needed to hold you up and to move the way you intend to move. Balance suffers when nerves don’t function properly (neuropathies) because of diabetes, kidney disease, vitamin deficiencies, medications, exposure to toxic substances, or a variety of esoteric blood and autoimmune diseases. Balance also suffers when pain messages from joints and muscles override the compensatory adjustments that have to be made quickly to avert a fall.  Arthritic diseases of the spine, spinal tumors, or diseases that affect the peripheral nerves can disrupt the pathways in the spinal cord that carry the messages from the nerves to the brain.

Vision: an important component of the balance system

Visual input contributes a lot to the brain’s interpretation of the world and to where the body is in three dimensional space. Darkness, by removing visual clues, sometimes uncovers balance troubles before they are apparent in good light. Of course, people who have never had vision have developed balance systems that function perfectly well without visual input and sighted people who lose vision eventually adapt their balance to its lack.
Brain: coordinating the input and determining the output

The brain takes incoming sensory information and converts it to a sense of where the body is in space. It also sends messages back down the spinal cord and out over the motor nerves to the muscles to stimulate them to contract and relax in just the amounts necessary the body where you want it. Interference with these finely tuned functions can cause feelings of dizziness and imbalance that are harder to describe than the vertigo caused by ear problems. These sensations are termed central imbalance and can come from strokes, side effects from medicines, or a fall in blood pressure on standing up too rapidly. Less common causes are a variety of degenerative diseases, like Parkinson’s disease, and cerebellar degeneration.

Keep you balance and you won’t have to retrieve it later

Even if you are young, practicing balance activities that challenge you and maintaining muscle strength, quickness and range of motion are useful habits that serve you well in youth as well as in older age. If you do slip, you will have the best balance possible and the strength required to get your feet back underneath you. Choices abound that give you opportunities to stimulate your balance circuits. Put your pants and socks on while standing. While you brush your teeth! where you can grab onto something if necessary, practice one-footed standing with eyes open, then closed. Do regular head rolling exercises, gently and slowly at first, to get those semicircular canals used to some movement or take dance lessons and get back to spinning movements. Make yourself move briskly at all times to keep speed in your repertoire. Squat completely and rise as often as possible when only bending is required. Try one-footed squats. Use the stairs instead of elevators. Balance on your toes, and on your heels. Walk an imaginary tightrope, frontward and backward. And if you still ride a bike or ski or dance or skate or run, keep it up. Unlike Humpty Dumpy, you’ll have a better chance of staying up on the wall.

Mind Games

The arrival of the baby boom generation at the threshold of old age coincides with a technology boom that marries the appeal of computer and video games to updated views on the brain’s neuroplasticity– its capacity to rewire itself even in adulthood. This union has spawned mind game businesses in which clients exercise their brains with computerized games, quizzes and tests. Lumosity and other cognitive training companies (see a sampling below) claim success in improving clients’ mental flexibility, speed, focus, concentration and memory. Well over 60 million subscribers hope their brains benefit from mental workouts in virtual gyms. Is their money well spent?

What is neuroplasticity?

Neuroplasticity refers to the dynamic process of physical change in and between brain cells that occurs in response to experience. When an infant is born, there is ample space between the cells in the outer layer of his brain, where higher functions like seeing, thinking, speaking, planning and remembering will develop. By the time he is two years old, this space between brain cells is tangled with nerve fibers connecting them to each other and to new cells which have migrated in from deeper areas. These changes continue in response to experience and are accompanied by pruning away of some of the initial connections to maximize efficiency and conserve energy.

For years the dogma taught in medical school was that neural circuitry was complete by the early twenties, a concept that was hard to understand because learning is possible at all ages and learning must have some kind of physical basis. But new evidence gradually emerged to prove that the brain continues to rewire itself throughout life. Neuroplasticity persists. The developers of the tools used by the companies like Lumosity seized upon this concept and added to it a wealth of data obtained from cognitive testing by psychologists and neuroscientists about how people think, remember, organize, plan and act. The brain games they devised for mental workouts in virtual gyms  call upon these functions in hope of strengthening the brain circuits they use.

Use the circuits or lose them

Unused brain circuits lose connections just like unused muscle loses size. Hard learned algebra disappears once there are no more tests to call it into use. But there are apparently some traces of initial learning left, because relearning is easier than first time learning. Rusty skills can be brushed up with less effort than their first development required. Brushing up a skill presumably involves a physical process within the networks of nerve cells called upon for the task. It is this process that the virtual brain gyms seek to stimulate and apparently succeed in doing according to at least some measures of improvement.

Virtual mental gyms vs. real life mental exercise

The mental skills exercised by cognitive training programs include memory, attention, mental speed and flexibility, mathematical skills and visual-spatial processing. There is no doubt that exercising these brain functions is beneficial and that, with enough time spent and effort expended, the exercise improves the ability to do the tasks involved. The question is whether or not the improvement in these tasks carries over into real-life reasoning, planning and problem solving abilities. Here the data are murky indeed. It appears that the positive effects of exercising in mental gyms, if measurable, are confined to the types of tasks involved in the exercise and are not sustained for long after the practice ends. Lifetime habits of mental activity have much more persistent influence as people age.

Most people know elderly individuals who have maintained robust minds. They are usually curious about life, resilient, adaptable and habitual seekers of information. These traits inform all of their interactions and activities. They spend their lives in mental gyms of their own construction and prefer active use of their minds over passive entertainment. Very often, they have also remained physically active long into older years.

The brain training programs popular today aim to provide a similar pattern of mental activity in an entertaining way, but the challenges are intermittent and short. If the participant has been on a lifelong course of high mental engagement with the world, and if he happens to enjoy the games and tests he is involved in and is committed to them, his test results after participation are likely to be better than those of someone who has been less active mentally in the past and who does not particularly enjoy the program.

Does mental exercise prevent Alzheimer’s disease?

Does an active, flexible and resilient mind resist Alzheimer’s disease? Since we do not know the cause of this devastating disorder, it is hard to speculate about what might make a brain resistant to the pathology that characterizes the disease – the amyloid plaques and neurofibrillary tangles that scar the brain. But it has long been known that the degree of mental deterioration in life in does not necessarily reflect the amount of scarring seen in the brain at autopsy of the patient with Alzheimer’s disease. Of two people with virtually identical diseased brains at autopsy, the one who had higher levels of mental activity over life – more reading, writing, educational achievement- will have suffered fewer and less severe disease symptoms. But even if this observation is coincidental and mental exercise has nothing to do with protection against the symptoms of Alzheimer’s disease, an actively lived life of the brain has its own rewards beyond preservation of health. And it does not require a virtual gym.

Other options

Though mind games don’t necessarily improve mental functions in daily life, there are no negative effects from engaging in brain training, except, perhaps, on the budget and on time better spent in physical and social activity. Regular modest aerobic activity like walking (preferably outdoors), resistance training such as weight lifting and Pilates exercises, adequate sleep and a supportive and enjoyable social network have all been correlated with better mental functioning in old age. For no fees there are always books, board games, crossword puzzles, jigsaw puzzles, hobbies, crafts, conversations and devotion to others’ needs.

 

 A Sampling of Reputable Brain Training Programs

 

 Lumosity, http://www.lumosity.com

         Rosetta Stone Fit Brains  www.fitbrains.com

            Brain Fitness by MindSparke www.mindsparke.com

                                                          Brain Gymmer http://www.braingymmer.com

No more posts.