Mole or Melanoma?

    In ancient mythology, moles were dark spots sent by jealous gods to spoil the faces of beautiful people. Later, moles became signs that the soul had fled the body, a notion that shows up today in Halloween witch masks with hairy warts sprouting from noses. In the 1800s, imitation moles made of leather, velvet and mouse fur covered pox scars in the aristocracy and led to their rebranding as beauty marks. Modernity continued this tradition with some famous stars like Marilyn Monroe enhancing their moles cosmetically. However, modernity also gave rise to the fear of moles because of worry about the most serious form of skin cancer, the melanoma. Most people have moles somewhere on their body. How do you know which ones to worry about?

Melanocytes: the origin of dark spots

    Before you begin worrying, you need to know what you are worrying about. The problem with moles is that, though the vast majority are quite benign, they come from the same type of cells that give rise to the dreaded melanoma. These cells are called melanocytes, one of three types of skin cells.  They make the pigment melanin that gives skin its color and protects it against ultraviolet light, the kind that produces sunburn. Melanocytes store melanin in little capsules inside themselves, ramping up production when the skin is exposed to sunlight, and distributing it to the outer skin layer where cells called keratinocytes absorb it.  Moles, which are technically known as melanocytic nevi, are clumps of melanocytes which appear as dark, often raised spots anywhere on the skin. They are regular shaped with smooth edges, evenly colored, and generally less than a quarter of an inch in diameter. Moles are not freckles, which are discrete spots of reddish-brown keratinocytes that appear mainly in very fair-skinned people because the melanin distribution process in their skin is uneven.

Moles: the cloning of well behaved rogue cells

    Babies are rarely born with any moles. Melanocytic nevi begin to appear in childhood and continue for several decades, peaking in the thirties. Most people have between 10 and 40 moles by adulthood.  Sometimes they begin to reverse and disappear. Recent research suggests that a mole appears when a rogue melanocyte begins to clone itself. This sounds like the same process that begins cancer, and, indeed, initial melanocyte growth involves genetic changes similar to those seen in cancer cells. But in the case of the mole, there appear to be controlling processes at work that prevent continued growth and organize the cells into well-defined architecture characteristic of non-cancerous growths. But will it turn into a melanoma – a cancer which may spread both locally and distantly?

Melanomas: Rogues without controls

    Most moles are and remain benign throughout life. Melanomas, though, are increasing in frequency in recent decades. Projected numbers of new melanoma diagnoses in the US in 2019 estimate over 96,000 cases, more in men than in women.  Deaths from melanoma will exceed 7,200.  Melanomas are twenty times more common in white skinned people than in dark skinned. About 25-30% of these melanomas will arise in previously stable, benign moles, but it is not at all clear that the mole is the source. They may be just as random in their appearance there as they are in any other part of the body. Melanomas also begin with rogue melanocytes, but they lack the control mechanisms of the offspring of the melanocyte that gives rise to a mole. They are biologically different from the cells in moles.

Markers for melanoma risk

    What increases the risk for melanoma development? Fair skin and freckling, a family history of melanoma, chronic unprotected sun exposure, large numbers of nevi, and biopsies showing irregular (dysplastic) features under a microscope. Large number of moles – in the range of 100, also increase the risk that a melanoma will appear in a previously benign spot.  Some melanomas appear in unexposed areas of the body, inside the mouth and in the eye, suggesting that they are different biologically from melanomas that occur in sun-damaged skin.  

Early recognition helps

    Early recognition of a melanoma improves the outcome. Five-year survival rates when the tumor is localized in the skin is 98%. With spread to regional lymph nodes, survival falls to 68% and down to 23% with spread to distant lymph nodes and other organs. Overall five-year survival is 92% and improving with the advent of newer forms of treatment based on immune attack of the tumors.

    Early recognition of melanoma depends on two things – knowing your own moles and examining them and the rest of your skin for any changes on a regular basis. Self-examination means using a mirror or asking a partner to help with scrutiny of your head and backside. What are you looking for?

  1. New spots with irregular color or borders. But every new spot, especially in older people, is not cause for worry. Many are so called age spots – flat, brown, over-pigmented areas. Others are overgrowths of keratinocytes called senile or seborrheic keratoses.
  2.  Change in old moles, especially irregularities in color or shape. Some melanomas may be pale, not dark. Some may have multiple shades. Some are relatively smooth but others may be bumpy.
  3. Growth in size happens to moles at times, particularly with hormonal change, or with sun exposure, and growth alone is a poor predictor of whether or not a mole has transformed to a melanoma. Growth with change in color or border irregularity is more worrisome.
  4. A bleeding mole, or failure to heal if the surface is disturbed. 

A biopsy is the only way to know for certain that what a change in a mole, or a suspicious new spot represents, and regular examination by a dermatologist eases worry, especially if you have a family history of melanoma or an unusually large number of moles. And it is never too late to protect your skin from the sun, by avoiding exposure during the height of the day, by covering skin with clothing, and using sunscreen in unavoidably exposed areas.

Restless Legs

       In 1999, Dr. William Dement, the nation’s foremost sleep researcher, lamented that 15 to 20 million Americans with Restless Leg Syndrome had fallen into a major knowledge gap in the medical care system.  Doctors simply didn’t recognize the symptoms, and, more importantly, didn’t understand the serious effects of restless legs on patients’ lives.  Dr. Dement wanted to educate patients and their doctors, but sleep medicine didn’t attract much public attention.  Then, in 2006, the pharmaceutical industry waded into the knowledge gap, launching an advertising campaign during the Superbowl for the first drug approved for the treatment of Restless Leg Syndrome, something most of the audience had never heard of.  Advertising a disorder to market a drug is not the education Dr. Dement had in mind, but at least it generates interest and curiosity, the first steps toward knowledge.

      “Syndrome” means a set of symptoms. Restless Leg Syndrome (RLS) encompasses creepy, crawly sensations in the legs (but occasionally in the trunk muscles or arms), occurring mainly in the evening, getting worse on retiring for the night, and relieved by motion, particularly walking.  The best estimates are that 5-15% of the population recognizes these symptoms as their own. More men than women are affected and frequency increases with age. The cause is unknown, but recent research suggests that iron metabolism in a tiny part of the brainstem is at fault.  

       RLS is also known as “Ekbaum’s Syndrome,” after Karl Ekbaum, who first described the problem in 1940.  Jerry Seinfeld’s script writers added “Jimmy Legs” to the RLS lexicon when they had Kramer moan about a girlfriend whose nocturnal leg movements made him crazy. Kramer was actually describing not RLS but the primary sleep disorder that often accompanies it: periodic leg movement disorder (PLMD). In contrast to restless legs, Jimmy Legs often bother bedmates more than they do the afflicted sleeper, who spends much of the night bicycling away with no memory at all of the movements or of the multiple awakenings that accompany them.

More than a sleep disorder

     Because restless legs cause insomnia and sleep deprivation, RLS is technically a sleep disorder. However, the sufferer’s waking world is also fraught with difficult situations that demand stillness. Theaters, airplanes, dental chairs – even operating tables- can be intolerable. The course of action taken for relief depends on the frequency and severity of the symptoms, balanced against the risks and side effects of the treatments considered.

     The mildest version of RLS occurs in otherwise normal people after extreme physical exertion such as running a marathon, and it responds to time, rest and energy replenishment. At the severe end of the RLS spectrum are people whose trouble falling asleep and disrupted nighttime sleep produce severe daytime sleepiness. They need accurate diagnosis and treatment, by sleep specialists if possible.  Between the mild, intermittent end of the spectrum and the severe extreme are all the rest of the RLS sufferers, including some pregnant women. These people are best served by an ongoing relationship with a doctor who understands the syndrome and the complete approach to treatment.

Diagnosis and Treatment

       Treatment begins with a good history and physical exam. Restless legs are sometimes symptoms of peripheral nerve or kidney problems, and occur in the setting of diabetes. They can also reflect side effects of drugs such as antidepressants, antihistamines, and anti-nausea medicines. Even in the absence of medical problems, a check of the serum iron is on order since long clinical experience and new research implicate iron metabolism. Iron deficiency should prompt a search for a cause – usually bleeding or dietary insufficiency. Medications to reduce stomach acid, now in widespread use, can also cause iron deficiency.

         Assuming there are no underlying medical problems, the next step is the elimination of stimulants from the diet – particularly in the latter half of the day. That means caffeine, cigarettes and alcohol – as well as any over the counter medicines of the types mentioned above. Developing mental alerting strategies to occupy the mind during times of boredom may help. When focused and occupied with games or puzzles the brain seems to suppress restless impulses. Increasing daily physical activity quiets the legs in over 50% of RLS patients.

          When sleep suffers and normal life situations such as long automobile rides are intolerable, pharmacologic intervention is often necessary. The drugs that appear to be helpful fall into four classes: the ones that increase the neurotransmitter dopamine or act like dopamine (dopamine agonists); narcotics like codeine; the benzodiazepines like Valium, and the anticonvulsant Gabapentin. All of these are serious drugs with potential side-effects, not the least of which is a phenomenon called augmentation – the worsening of symptoms over time producing the need for more drugs.  But the drugs can be true life-savers for people who are severely afflicted and in desperate need of sustained sleep and the ability to remain still.

       What of the new drug touted in Superbowl ads in 2006, and a more contenders released since then? They are dopamine agonists, some of which  have been around for years – FDA-approved for use in Parkinson’s disease, but also used “off-label” by doctors dealing with RLS patients. Their marketing focuses a light on the obscure world of sleep medicine, where devoted researchers who followed Dr. Dement continue to educate patients and doctors about the troubled sleep that generates many accidents and eats away at productivity and emotional resilience. That is a service to all.

The Legacy of Smallpox: Immunization

Imagine a virus spreading disease in your city. Imagine sending your children and other loved ones to a rural area to be injected with infected material taken from people ill with the virus. Imagine the injections making them sick, but not as sick as they might be from contracting the disease naturally. They will require a month for recovery, but, from that time, they will no longer have to fear the virus. You have now imagined exactly what happened at the start of the age of immunization. The time was the mid to late 1700s, the place was the colonies that would become the United States, and the epidemic was smallpox, a dangerous disfiguring illness. One of the families involved, in 1776, belonged to John Quincy Adams.

At the time, there was no FDA to regulate the treatment, known as variolation (from the Latin word variola meaning spotted).  People risked contracting severe cases of smallpox from the treatment, but they chose to go ahead because smallpox was a fearsome disease which, for centuries,  swept through both the Old and New Worlds in epidemic waves, appearing and disappearing, killing millions, scarring survivors, and changing history as the scourge laid armies low on one side or the other.

An idea with a long history

The idea that suffering a mild case of smallpox prevented a severe case arose independently in several different parts of the world, with the first written reports dating back to the mid-16thC in China. Cotton Mather, a Boston preacher, learned of the practice of deliberate infection from his African slave Onesimus in 1721 and introduced the practice to the Americas. Infected material or scabs from smallpox pustules were inhaled or scratched into the skin and while the practice killed 2-3% of the patients, that toll was considerably less than the 30% mortality rate of the epidemic disease.

How the variola virus causes smallpox

Pustules are the distinguishing marks of the disease called smallpox. The variola virus, whose only host is the human, enters the body via the mucous membranes of the mouth and nose. The virus multiplies quietly inside cells, producing no symptoms for 10-14 days. Then the body reacts with high fever, headache, and malaise. Patients take to their beds and develop a rash – at first, red spots, but then blisters which fill with pus.  They spread from the mouth and nose, over the face, down the trunk and extremities. Coughing and sneezing spew infected material from pustules into the air, spreading the disease to caretakers. Deep skin lesions leave permanent pocked marks such as those scarring the faces of George Washington and Abraham Lincoln. Unlike many other viruses, variola is fairly hardy outside the body, which enabled its transmission from contaminated blankets given to native Americans by the British during the French and Indian war. The virus also traveled downwind from hospital ships on the Thames River in England in the 1890s.

The role of milkmaids in the history of immunization

The next chapter in the history of immunization occurred in Britain, where the fabled, beautiful skin of milkmaids was attributed to resistance to smallpox, conferred by prior infection with cowpox, a milder disease now known to be caused by the vaccinia (meaning cow) virus. In the late 1700s, Edward Jenner, a Gloucestershire physician, successfully prevented small pox by prior inoculations with the material from cowpox infections. The inoculations were called vaccinations, and Jenner became “the father of vaccination.”

Elimination of smallpox

The cowpox vaccine evolved over time into the standard vaccination procedure which eventually resulted in the elimination of the smallpox virus from the human population in the mid-1900s. The last natural case occurred in Somalia in 1977. Smallpox vaccinations, which had significant adverse effects in 1-2% of the population, were discontinued in the US in 1972 and the WHO declared smallpox eliminated from the world in 1980. Variola is the first and only virus to have been eliminated as a source of human illness, but other infectious diseases have been tamed in similar fashion and the hope is that new ways of creating vaccines will be even more effective.

How vaccines work

Smallpox vaccines were made from whole, live vaccinia viruses. Some vaccines for other diseases come from attenuated viruses (weakened viruses that transmit disease less effectively), or from killed viruses. Some vaccines are directed not at viruses, but at bacteria or at toxins like those produced by the diphtheria bacteria. All of them induce the immune system to create a memory of the specific organism or toxin, which will protect against future infection with the organism or the effects of a toxins like the ones produced by tetanus or diphtheria bacteria.

Because the immune reaction to infection is complicated and involves many types of immune cells as well as production of antibodies to the infecting organism, immunity to future infection is best induced and longest lasting after actual infection. Immunity after smallpox infection is lifelong, but lasts only 5-7 years after smallpox immunization. Other vaccines, especially those made from live organisms, are very effective and, some provide lifelong protection, especially with periodic booster doses. They have made infections like polio, measles, diphtheria, whooping cough and tetanus so rare that many doctors have never seen such illnesses.    

New technology

Like variolation, vaccines that rely on whole organisms can cause serious and unintended consequences. In the last two decades, genetic technology has enabled researchers to create vaccines from small parts of disease-causing organisms like COVID-19 or hepatitis viruses. Since sequencing genomes became automated and less expensive, the world of genetic virology and bacteriology has exploded. It is no longer necessary to rely on tedious and technically difficult culture methods to grow and identify microscopic and submicroscopic organisms. And it is possible to break down genetic information and use it to artificially produce components of these organisms or the proteins they produce, employing stock materials off laboratory shelves.

Using genetic material from viruses, researchers get living cells in laboratories to produce proteins specified by those genes and then create vaccines from the proteins. Or they inject the genetic material directly into people to get their cells to make the proteins. The immune system then recognizes these proteins as foreign and creates antibodies and memory cells against them. Theoretically, the induced immune memory prevents infection should the vaccinated person encounter the virus.  But much work remains. Some of the vaccines tried do not produce robust or long lasting immunity. Some have had paradoxical effects, with the immunized individual responding to actual infection with worse disease, as if a small amount of immunity actually enhanced the ability of the live virus to cause illness. The widespread deployment of the new COVID-19 vaccines – apparently effective in test groups over a relatively short testing period (safety studies in the past have run for years) will provide an enormous amount of information as to long-term safety and efficacy over years to come. This will be the largest and most public trial so far for the vaccine industry’s newest technologies. If the results are as good as the researchers who have developed them expect them to be, you can expect more and more vaccines to appear on the market.

 In the meantime, smallpox virus samples still exist in the US and in Russia. If these stocks had been eliminated, as once was planned, the smallpox virus would truly have disappeared from the world because, unlike most of the viruses that plague us, the small pox virus has no other animal hosts. And while there are long term plans to create new smallpox vaccines, it would be wise, in this uncertain world, to maintain the ability to rapidly understand the genetic makeup of the smallpox virus, as well as to rapidly implement old-fashioned smallpox immunization.

One-Footedness: The Key to Balance

Human beings negotiate the world on two legs, a skill mastered in toddlerhood. As children we are well balanced and swift. Then one day in mid-adulthood, we look at our children and realize that they are fast out-performing us in skills that require balance. When did balance become more difficult?  Of course we cannot define that point because life sneaks up on us, nibbling away at skills we do not practice because nature works assiduously to conserve energy.  Motor and mental tasks we do not practice get put to rest.

What’s involved in balance?

We maintain balance by taking in three types of sensory input and adjusting muscular activity accordingly. The three input systems are vision, messages from hair-like projections in three fluid-filled canals set at right angles to each other in the bone of the middle ear, and continuous reporting from delicately engineered receptors in our muscles and tendons that measure stretch and tension.  We can learn to balance without the first two components of the balance system, but not the third. To demonstrate the importance of the input from the muscles and tendons, try getting up and walking after one foot has fallen densely asleep from pressure on the nerves which are the highways for sensory information on its way to the brain. Even if you can wiggle the foot because motor nerves are more resistant to pressure, you cannot use it without knowing where it is.

Use it or lose it” applies to balance

Much of modern adult life involves little more than moving from one form of sitting to another, which gives the feedback systems in the eyes, ears, and muscles and tendons little exercise. Over time, balance skills deteriorate, and eventually falling happens with simply tripping or changing position or direction. Falling is the cause of many hospitalizations and, often, the injuries incurred lead to death. Living well and independently over the decades depends in no small part on maintaining the ability to walk without falling. Fortunately, balance improves with practice, and we have ample opportunity throughout the day to engage the balance systems and give them a workout.

Waking up the eyes and ears

Eyes are easy. Look around while you walk. Off to the side, up, down, straight ahead. If you are a straight-ahead looker most of the time, looking around may make you feel a bit unsteady at first. But your brain will begin to coordinate the changes with the information coming in from the ears and the muscles, so it will get easier. Once it does you can add more head movement, following your gaze. That will add more movement of the inner ear canals, which can become very accustomed to minimal movement. Young adults taking dance lessons for the first time or grandparents taking grandchildren on park equipment might be surprised to find themselves dizzy because of long unpracticed movements that involve spinning in circles or bending over. The ears are reporting unusual movements but with practice they will re-learn and stop sounding alarms. Deliberate exercises in head tilting and turning, such as the ones widely prescribed for benign positional vertigo, can speed the process.

Waken the muscle receptors by paying attention to walking

The stretch and strain receptors in the muscles are active whenever we are upright, but also lose function – even in walking, which is the most frequent and complex motor function we perform. Walking involves the subconscious coordination of over 300 muscles in a series of controlled falls that move the 200 bones of the skeleton forward or backwards in space, sometimes with the addition of upward or downward travel on stairs or ramps. Walking requires one-footed balance, with one foot bearing the body’s entire weight while the other foot swings forward. Landing the forward moving foot prevents the body from falling as it moves forward.

As the years pass, the body’s motor system tries to conserve energy by allowing you to use fewer, large muscles rather than more numerous small ones to accomplish the task of walking. Balance suffers and it is harder to adjust quickly to uneven terrain or surprises that throw you off balance. Learning to re-engage and strengthen all the smaller muscles devoted to one-legged balance re-awakens a lot of the sensory input and improves stability in all your upright activities.

Exercises for one-footedness

A good exercise for developing one-footed balance involves standing on one foot while barefoot (elevated heels throw the center of gravity forward), lifting the other knee in front of you and using a countertop for support. The gluteal muscles in the buttock on the side of the weight bearing leg will be forced to contract to keep the pelvis from dropping on the other side. The entire foot, powered by the lower leg muscles, is the stable platform that supports the rest of the body and the big toe stays in active contact with the ground. As strength and balance improve, try moving away from the support of the counter, getting the free knee up to a right angle in front of you and then swinging it down and back and a little behind you, concentrating on keeping the pelvis level and stable and the trunk upright. Adding toe lift exercises on stairs – dropping the heels a little below the stair level and pushing up from there – adds to the strength and flexibility of the ankles and to sensory input from the many intrinsic foot muscles and lower leg muscles.

Taking the exercises out for a walk

Once you get the feel of the muscle contractions necessary for one-legged balance, then try to feel the same sequences of activity while walking.  Good, upright posture helps. Your head weighs 10-14 pounds when directly over your spine, but the weight doubles, triples and even quadruples in proportion to how far in front of the body it is. If you have the habit of jutting your head forward with a curve in the back of the neck, or looking at the ground while you walk, the work of balancing increases proportionately. Keep the chest lined up over the pelvis and engage the trunk muscles – the so-called core – by trying to lift the pubic bone upward with the front of the abdomen. The core muscles maintain proper pelvic tilt. Then, while walking, try to feel the one-footedness you practiced while standing next to the kitchen counter and the ankle motion you felt doing toe lifts.

The action in walking is at the hip, ankle, and foot. The role of the knee is to let the leg bend as necessary. As you shift your weight to one foot, the gluteals contract in the buttock to hold the pelvis and prevent the released side from dropping. In the brief phase before the supporting leg begins to push you forward, notice the entire sole of the foot. Its connection with the ground begins with the heel planting down and continues as the body weight rolls forward. The knee will be straightest when you push through and are about to plant the new foot.

Do not neglect the feeling coming from the toes – especially the big one as you push off and begin to move the other leg through. Toes add a significant amount of surface area, increasing the available sensory information fed into the motor system and they contribute to the push phase of the gait. Notice also how the ankle moves as the heel lifts off the ground. Notice all of it as your other leg is swinging through and really try to relate the sensations to the one footed balance exercises you have done to practice.  

Notice other gaits

And while you are out walking and noticing your own one-footedness, take a look at some of the gaits you see. You will begin to learn the risk factors for falling. You’ll see people using only large muscle groups, initiating the leg swing by lifting the entire side of the body, from the shoulder down. They are already off balance. Their bodies must tip to the opposite side to allow the advancing leg to clear the ground. When the new leg lands and the weight shift begins again, the gluteals are not engaged, there is no push off from the hip and the foot, and the other side begins to lift from the shoulder. On a sunny day you will see such a walker’s shadow shift from side to side. Sometimes there are physical problems that impair walking balance, but for someone in good health, without neurological disorders like neuropathy, working to make the shadow move in a straight line pays off in a longer functional life. 

The Headaches that Predict Catastrophe

One of the most treacherous problems a busy emergency room physician faces is headache.  “Headache” is a very common symptom, different from focal head pains attributable to sinus, eye or ear problems. While very painful and sometimes associated with nausea and vomiting,  the vast majority of headaches, even if frequent and debilitating, are benign.  They do not signify underlying illnesses or impending danger.   But the emergency physician cannot afford to be wrong about the rare headache that predicts oncoming catastrophe and provides a chance to intervene.

Two broad categories

Catastrophic headaches fall into two broad categories. The first category includes “space-occupying lesions” such as tumors, hemorrhages, abscesses, and hydrocephalus (known commonly as “water on the brain”).  The second category involves infectious and autoimmune problems that produce inflammation, triggering pain receptors in the membranes surrounding the brain and its blood vessels. Catastrophes avoided by successful interventions in both categories include death, permanent brain damage and blindness.  

Tumors and abscesses

The most common fear about a bad headache is that it is caused by a brain tumor, but tumors usually produce other symptoms, involving speech, thinking, coordination or vision before they produce headache. Since the brain tissue itself has no pain receptors, tumors cause headache when they distort surrounding membranes or blood vessels, which have pain receptors. Tumor-related headaches worsen with positions and activities that normally cause the pressure in the veins in the head to rise – coughing, sneezing, lying down, straining at a bowel movement or lifting something heavy. As tumor size and pressure increase, nausea and vomiting appear. Occasionally, brain abscesses – pockets of infection surrounded by capsules -may mimic tumors. They usually come from blood infections seeding bacterial or fungal organisms into the brain.

Hemorrhages in the brain

Brain hemorrhages occupy space and increase pressure in the head.  Deep small blood vessels, damaged by high blood pressure or arteriosclerosis, are usually the culprits. While these intracerebral hemorrhages can cause sudden headache, stroke-like symptoms such as paralysis, confusion, trouble speaking and loss of consciousness occur first or soon after the onset of headache.

Hemorrhages outside the brain, but inside the head

Headaches are also a symptom of epidural and subdural hematomas – collections of blood that accumulate over the surface of the brain hours to weeks after some closed head injuries (meaning no skull fracture). The history of injury, even seemingly trivial injury in an elderly patient,  is crucial to correct evaluation of these headaches and there may be no other accompanying neurological symptoms. A head blow in the temple, where the skull is the thinnest is a common history. Young children and older adults are more susceptible to epidural hematomas (located between the inner skull and the the dural membrane over the brain) than those in between those age groups. Both epidural and subdural (between the dural membrane and the surface of the brain) collections of blood usually require surgical removal, sometimes as an emergency if symptoms such as change in level consciousness appear. Actor Liam Neeson’s wife Natasha Richardson did not survive an epidural hematoma incurred in a skiing related fall in 2009.

The “sentinel headache” of the aneurysm

Bleeding from brain aneurysms – weak spots at branch points of arteries – can be immediately catastrophic, even causing sudden death. But a tiny, warning leak before an aneurysm actually ruptures may cause a “sentinel headache” which allows time for life-saving surgical repair to prevent the oncoming, big rupture which typically occurs sometime in the next 10 days.  A sentinel headache is sudden and severe pain involving all or part of the head, It is sometimes described like a “thunderclap.”  As the little warning squirt of blood dissipates in the spinal fluid around the base of the brain, the headache dulls but a peculiar, longer-lasting pain may appear in the middle of the upper back, usually worsened with movement and probably indicating irritation from blood in the spinal fluid around the spinal cord. Diagnosis involves brain imaging with dye to study the arteries, and possibly a spinal tap to make certain bleeding has occurred. Unruptured cerebral artery aneurysms are found incidentally in 2% of autopsies so the problem is not rare.

Hydrocephalus

Hydrocephalus is a rare cause of headache, but one that should never be overlooked. The rise in pressure in the head comes from spinal fluid being trapped in the ventricles, hollow structures in the center of the brain where spinal fluid is made. Normally the spinal fluid circulates out of the ventricles via a very small channel, and bathes the surface of the brain and spinal cord before being absorbed into special veins at the top of the head. If flow is blocked, the ventricles begin to enlarge putting pressure on the surrounding brain. Most times, the onset of hydrocephalus is gradual, with headache, nausea, vomiting and balance problems gradually increasing. Unrecognized and untreated, obstructed spinal fluid flow leads to lethargy, coma and death, within 24 hours if the obstruction is sudden. Causes of obstruction include congenital anatomical abnormalities, tumors blocking the ventricular outflow tracts, scarring of these passages by inflammation from past meningitis or bleeding. Hydrocephalus most often requires surgical intervention to either remove the obstruction or to place a shunt around it, allowing cerebrospinal fluid to escape from the ventricles.

Headache from infection

Headache producing infections mainly involve the meninges, the membranes covering the brain and the spinal cord and are caused by viruses, bacteria or fungi. Viral and bacterial meningitis both cause severe headache, neck pain and rigidity and photophobia – inability to tolerate bright light. Movements of head and trunk and even eye movements are painful. Someone suffering from bacterial meningitis has a high fever, looks extremely ill and deteriorates rapidly. Identification of the infection type requires spinal fluid, obtained via spinal tap – insertion of a large needle into the spinal canal in the low back.  Antibiotics are lifesaving. Viral meningitis, though painful, is less dramatic, and gets better on its own. Fungal meningitis is rare and much slower and less dramatic in its presentation than bacterial meningitis. It most often occurs in people who have impaired immune systems and requires prolonged treatment with antifungal drugs.

Non-infectious inflammatory headache: temporal arteritis

Headache from a non-infectious inflammatory condition called temporal arteritis usually presents itself in the seventh or eighth decade of life as a constant, often one-sided pain. Other symptoms that provide clues to this diagnosis are pain in the jaw muscle, especially with chewing, and tenderness of the artery just under the skin of the temple – the origin of the name for auto-immune inflammation that affects the arteries that supply the skull and brain with blood and can cause blindness and strokes. Diagnosis is confirmed when a blood test called ESR (erythrocyte sedimentation rate) is elevated and a temporal artery biopsy shows characteristic inflammatory cells in the artery wall. Treatment with steroids like prednisone, undertaken soon enough, prevents blindness and takes the headache away, but must be continued for many months.

A very useful question

One of the most useful questions an emergency room physician, or any other professional evaluating a headache complaint can ask the patient is “How worried are you about this headache?” People know themselves and have an innate sense about the nature of their symptoms. They will very often know the difference between a catastrophic headache and all the others.

Probiotics: Manipulating Your Internal Ecosystem

The human body is an ecosystem harboring numerous different species living in delicate balance, well-adapted to each other and to their physical environment. The creatures that thrive on our skin and in our noses, mouths, urogenital tracts and guts are microscopic organisms – mainly bacteria, fungi and bacteriophages (viruses carried by bacteria).  These organisms comprise the human “microbiome” and perform valuable services for us, breaking down food, making vitamins and other chemical compounds that we absorb, teaching our immune systems how to recognize invaders, and maintaining bowel health.  Their genes interact with our genes, up-regulating and down-regulating them as we change our diets.

Research relating the the invisible world of the microbiome to physical states of health and illness is still in its infancy, but has produced interesting data and useful observations about attempts to restore microbiome composition after disruption by illness and antibiotics. Outside this world of esoteric research, entrepreneurs have leapt ahead of the facts, supplying millions of people who wish to better their health with supplements called probiotics, pills containing “living microorganisms, which when administered in adequate amounts, confer health benefits on the host.

Not a new idea

The idea of manipulating the body’s microorganisms to improve health is not new. In 1908, Nobel prize winner Elie Metchnikoff, the “Father of Immunology,” theorized that the large intestine was a cesspool where putrefaction by bacteria produced autotoxins that aged the body. While some believers advocated removing the colon or administering repeated enemas to cleanse it, Metchnikoff thought that Lactobacilli, bacteria found in the yogurt consumed by long-lived Bulgarians, could  battle the putrefactive bacteria, and that consumption of the yogurt, along with other ascetic practices like avoidance of alcohol and intoxicants, would prevent dementia, illness and premature death. Like yogurt, other fermented, bacteria-laden foodstuffs such as kefir and sauerkraut have long been advocated for general good health.

Experimental evidence?

There is tantalizing experimental evidence that the interior microbial world has previously unsuspected ties to overall health. For instance, in germ-free mice, introduction of specific bacteria into the gut will alter energy usage because the bacteria digest incoming food.  The mice get fatter on the same amount of food they were fed in the germ-free state because they absorb more of it. Bacteria also produce substances which act like neurotransmitters and communicate with the brain via the gut’s neural network. And they modify the action of their genes to match the types of food we eat, which in turn modifies food absorption and immune system function.

Genetic tools speed modern microbiome research

High speed DNA analysis is the modern tool which drives microbiome research. No longer do scientists struggle with culturing and identifying the multitude of bacterial types that reside in the human body. Based on microbial DNA sequencing of samples from human bodies, we know that we carry over 3.3 million bacterial genes, vastly more than our own 22,000 genes). There is far more diversity between humans in terms of the genetics of the organisms they carry than there is in their genetic profiles – and enough stability in each person’s microbiome to create unique microbial DNA profiles, which can be identified like fingerprints on surfaces people touch. There are even identifiable differences between the fingerprint profiles from an individual’s right and left hands.

Fecal transplants: the ultimate probiotics

The best scientific information about manipulation of the microbiome in the quest for better health comes from the ultimate type of probiotic – the so-called fecal transplant. Transfer of fecal material from one person’s gut to another’s was first tried in the 1950s. In this experiment, a patient suffering severe colitis was spared surgical removal of the colon when restoration of a normal mix of bacteria, as well as everything else in contained in the stool sample used for the transplant, quelled the toxic bacteria eating away his colonic lining.  Since that time, fecal transplantation has been 90% successful in treating the severe and often recurrent colitis and diarrhea produced by the bacterium clostridium difficile.

The complex nature of fecal material

Fecal material contains bacteria, viruses, bacteriophages – the viruses that bacteria can transfer among themselves and to the host, other types of microorganisms, and all the chemical products of the metabolic processes of all these living creatures. Each stool donor has a unique microbial profile, as does each fecal transplant recipient. Donor stool is screened for drug resistant and abnormal bacteria, prepared as a slurry and introduced into the colon via colonoscope, or into the stomach or small intestine via a tube. Capsules that resist the acid and enzymatic environment of the upper GI tract also show some promise.

Probiotics: less complex mixtures of living organisms than fecal transplants

Like fecal transplants, probiotics aim to create a healthier balance of bacteria in the gut, but they are capsules containing a few types of freeze-dried bacteria harvested from cultures in labs. When swallowed and exposed to the warmth and moisture of the body’s interior they spring to life. Sold as supplements, probiotics are not subject to FDA quality control.

Probiotics have been studied as treatments for antibiotic-induced diarrhea, allergies, autism, metabolic syndrome, autoimmune ulcerative colitis, Crohn’s, disease, infectious colitis, constipation, traveler’s diarrhea, periodontal disease, and more. The studies are fraught with problems that make most of them inconclusive at best. But as preventives for antibiotic0induced diarrhea and clostridium difficile diarrhea, probiotics may be helpful and are generally not harmful for otherwise healthy people.  Theoretically, people with depressed immune systems could contract an infection from one of the organisms included in the product. There has been at least one neonatal death attributed to a contaminated probiotic.

Do the introduced bacteria survive?

A recent, carefully designed study from Israel assessed whether or not probiotic bacteria took up residence in the colon after ingestion. In some people, called persisters, the probiotic bacteria can be found in the recipient, but in others, called resisters, none of the probiotic bacteria survive. The type of bacterial populations already living in the gut make the difference. In addition, another good study demonstrated that probiotic use actually delayed the return of normal bacteria to the colon after a course of antibiotics.

Much work remains in the investigation of  the human microbiome and in attempts to improve health by manipulating it. What is clear so far is that each person’s microbiome is unique and that success in understanding and manipulating it will require individualized evaluation. Most probiotic use at this time is a one-size-fits-all approach, done for non-specific reasons. Similar to Metchnikoff’s Bulgarian yogurt.*

*modern science shows that the lactobacillus in the yogurt does not survive the trip through the gut to the colon.

Tuberculosis: The Long Pandemic

In late 2012, a Nepalese man began a three month-journey, on foot, by car and boat, and in an airplane, through South Asia, Brazil and Mexico, and into Texas. He brought with him an infection called XDR-TB, short for extensively drug resistant tuberculosis, a disease still relatively rare in the US, but one that public health officials fear because it is spreading across the world. We have become complacent about TB because it has been successfully treated with antibiotics since the 1950s and because most tuberculosis cases occur in underdeveloped countries where malnourished and sick people with weakened immune systems live in crowded and unsanitary conditions. But with easy global travel and spreading antibiotic resistance, especially on the Eastern border of Europe and in Africa, China and India, more awareness of this ancient disease is needed again in areas of the world where improved living conditions have made TB uncommon and unknown.

A long history

Three-thousand-year-old writings from China and India, passages in the Old Testament, and the writings of Hippocrates all describe the affliction we call tuberculosis. The disease became a scourge as more and more people crowded into urban centers in northern climates in the middle ages.  Between the 1500s and 1800s, hundreds of millions of people in Western Europe, England and the eastern US died of TB, then called consumption and attributed either to a “malignant miasma” in the air or to hereditary constitutional weakness. Squalid living conditions, poor indoor ventilation and malnutrition common during the early industrial revolution facilitated the spread of the disease, which in 1882 was finally proven to be caused by a bacterium, Mycobacterium tuberculosis.  When living conditions began to improve in the early 1800s the death rate began to decline, but a cure awaited the development of antibiotics in the mid-twentieth century. The goal of eradicating TB, however, has not been achieved.

Latent vs active infections? The immune system decides.

Anyone can be infected with the TB bacteria, acquired by inhaling the respiratory droplets of someone who has an active infection in their lungs. Inhaled TB bacteria are captured by cells that scour the airways for invaders. The bacteria reproduce themselves inside those cells, eventually killing them and exciting an immune response that in 90% of people will clean up the infected area, called a “tubercle,” in a process called caseating necrosis because the dead tissue resembles crumbled cheese. The tubercles may leave small scars in the lung, visible on chest X-ray, without ever having caused any symptoms of illness. Infection in these immuno-competent people, the vast majority, is called latent TB, a condition that affects almost a third of the world’s population, including 13 million people in the US.

In 10 % of people who get infected with the TB bacteria, the immune response is insufficient. Active tuberculosis is the result. Caseating tubercles may grow to large size and collapse producing cavities in the lung. Tubercles that erupt into the airways allow surviving bacteria to spread to other people in sputum and respiratory droplets. In addition, bacteria may travel to other parts of the body via the lymphatic system, setting up infectious nodes in almost any tissue.  Typical symptoms of active tuberculosis develop over weeks to months and include chronic cough, night sweats and fever, weight loss, weakness, fatigue, and skin pallor. Tubercles in various organs and lymph nodes give rise to local symptoms from swelling and inflammation.

Latent infections come alive

Latent TB can reactivate and become active TB if the carrier’s immune system weakens – a result of other disease such as HIV, drug treatment that suppresses the immune system, or just deterioration of health that accompanies drug use or poor living conditions. Ten million cases of active infection occur each worldwide year.

Before antibiotics: high altitude and collapsing lungs

In the 1840s a botany student who suffered from TB traveled to the Himalaya mountains and came home to report his cure, setting in motion the sanatorium treatment for which high altitude locations such as Davos Switzerland and Denver, Colorado became renowned. Much later, scientific work showed that the mycobacterium tuberculosis grows poorly at low oxygen pressures, a fact that may well have added to the other health and nutritional benefits of sanatorium life. Attempts to put infected parts of lungs “to rest” by collapsing them with injections of nitrogen into the chest began in the 1880s.  German Author Thomas Mann memorialized this procedure, called an artificial pneumothorax, in his novel The Magic Mountain.  The treatment method continued well into the 1940s, when the development of antibiotics finally offered a cure for TB.

Not the usual antibiotic treatment

Antibiotic treatment of TB is not easy. Patients must take two to four drugs on a strict schedule for 6-9 months and tolerate some unpleasant side effects like nausea. Until their sputum is free of TB bacteria – which can take several weeks – they must be strictly isolated. Caretakers benefit from proper mask wearing because the tuberculosis bacteria is larger than N95 mask pores.  Because drug resistance has been a result of poor compliance with the drug regimens, strict monitoring and observation of patients is necessary. Often drugs must be taken under direct observation. Once drug resistant disease occurs, treatment becomes more complicated and prolonged, requiring trials of different antibiotics, with even more need for isolation of infectious patients and close supervision throughout the entire course of treatment.

Testing and vaccines

A tuberculin skin test, when positive, indicates prior infection with tuberculosis bacteria, and therefore latent disease in someone who has no symptoms. Chest X-ray and chest CT, as well as collection of sputum for microscopic analysis and culture are the mainstays of diagnosis in active disease or if someone with a positive skin test has any suspicious symptoms.

The only vaccine for TB, used since 1921, is made from a weakened bacterium similar to the TB bacterium. Its acronym BCG is short for the virus name (Bacille Calmette Guerin). BCG reliably prevents neonatal disseminated forms of TB such as meningitis, but is much less effective in preventing the adult respiratory form of TB, which is the usual version beyond childhood. It has not been regularly administered in the US because most people handle primary infections easily. However the spread of drug resistant forms of TB may change that recommendation, especially for people regularly exposed to patients. In the meantime, work on new vaccines employing new technologies continues.

Drug resistance is spreading

TB was on the decline in the US until the 1980s, when HIV disease appeared, devastating the immune systems of its sufferers and making them susceptible to active TB.  With better treatment of HIV, TB is on the decline again, but popping up increasingly in the homeless population, particularly where they congregate indoors in crowded shelters. Recently, cases of drug resistant TB have occurred in people who had never been treated, meaning that the drug resistant bacteria are spreading, not just evolving in treated patients. In eastern Europe 30% of new TB cases are now resistant to many of the TB drugs. The traveler who appeared in Texas with XDR-TB was a warning. We need robust public health measures to monitor infectious diseases, improve sanitation and living conditions as much as we need development of new antibiotics.

 

Dyspnea (trouble breathing): A symptom with many causes

A baby enters to the world with collapsed, fluid filled lungs.  Within 10 seconds, he gasps, takes a noisy breath and completes his transition to the outer world. From that point, he will inhale and exhale air over 8 million times a year until he takes his last breath at death. Breathing is his link to life, much as his umbilical cord was the link when he was in the womb. As long as his heart and lungs remain healthy and the muscles and bones his chest can move normally, he will maintain a comfortable, laissez-faire relationship with his breathing, seldom paying much attention to the never-ending process of taking in oxygen and getting rid of carbon dioxide. Strenuous physical activity will make him notice his breathing and he will learn the physical limits beyond which breathing harder and faster is ineffective. While he will experience discomfort with breathing at those limits, he will not feel fear or distress because he understands that his gasping for air is a normal response and that he will recover promptly when he rests.

Words used to describe trouble breathing

But when there is trouble somewhere in the respiratory system, the act of breathing becomes distressing in ways that and prompt a variety of different descriptions: “I feel short of breath.” “I can’t catch my breath.”  “My chest is tight.”  “I’m smothering.” “I’m suffocating.” “I can’t take a deep breath.”  “I can’t breathe out all the way.” “Breathing is hard work.”  “I need to more air.”   Doctors use one word to encompass all of these descriptions – dyspnea, defined as abnormally uncomfortable awareness of breathing. Dyspnea is not a diagnosis but a symptom of many different types of respiratory problems. Diagnosis requires discovering where the trouble is in the normal chain of events that make up one breath.

The drive to breathe

The first part of a normal breath is the drive to breathe –  a message from the brain to the muscles that increase the volume of the chest. The ribs move outward and the diaphragm between the chest and the abdomen moves down. The chest cavity expands, much like a fireplace bellows, sucking air down the trachea and the bronchial tubes into the lungs. In the next step, oxygen is absorbed into the blood and carbon dioxide is expelled from it. This gas exchange takes place in the spongy tissue of the lungs, in tiny air sacs called alveoli where red blood cells flow in single file though tiny capillaries. After 3-4 seconds, the muscles relax, the chest cavity diminishes in size and air rushes back out. Normal breathing goes on automatically, beneath conscious awareness unless the body demands more gas exchange because of increased exertion.

The drive to breathe increases when the body’s demand for oxygen goes up.  “Hard breathing” from exertion is not distressing or indicative of illness unless it occurs in someone who has been very fit and previously more capable. Low oxygen pressure at high altitude also stimulates the breathing drive, but true dyspnea is a sign of altitude sickness and need for immediate treatment and evacuation to lower altitude because of fluid in the lungs.  Anxiety and fever increase respiratory drive, as does hyperthyroidism, producing variable awareness of rapid breathing, but little discomfort.

The highway air movement follows

Moving air in and out of the lungs is the next part of normal breathing and a common source of true dyspnea. Infections, chronic inflammation from allergies, cigarette smoke or other environmental toxins can narrow and partially obstruct the trachea and the bronchi. Symptoms include coughing, wheezing and faster breathing to compensate for less air moved with each breath. Breathing “seems like hard work.” Sometimes bronchial spasm from inflammation makes it difficult for people to exhale fully. They have a sense of not being able to empty the air from their lungs and as a result get the feeling that they cannot inhale enough on their next breath. Asthma is the typical illness which causes this type of dyspnea.

Muscle disorders like Lou Gehrig’s disease, overall weakness from chronic illness, or paralysis from spinal cord problems can limit air transport by limiting chest wall movement. Obesity causes breathing problems because even normal muscle may not be strong enough to move the chest wall buried under heavy weight.

The deep reaches of the lungs where the work is done

Farther down into the lungs, dyspnea comes from impaired gas exchange and feels like air hunger – no matter how fast the breathing rate is, there still seems to be insufficient air. Lung infections like viral and bacterial pneumonia, and chronic inflammatory disorders that produce lung scarring are the typical culprits.  Cough, fever and rapid onset of dyspnea are clues to pneumonia.  Gradual onset of dyspnea is more common in the inflammatory scarring and in smoking related lung disease, which causes both obstruction to air flow and loss of the alveoli where gas exchange occurs.

Poor blood flow through the lungs can be the culprit

Normal breathing also depends on the heart, which is the pump that pushes blood through the lungs for gas exchange. A failing heart makes blood flow too sluggish for adequate gas exchange during each breath, causing a sense that air flow is inadequate and making breathing rate go up. People who have cardiac dyspnea also describe feeling suffocated or smothered, especially if fluid begins to leak from the blood into the lung tissue. Gravity influences the symptoms which worsen with lying down and improve with sitting up.

Pulmonary emboli, clots that form in the legs or pelvis and break off and travel upstream, can cause severe and sudden dyspnea by lodging in and blocking major blood vessels in the lungs.  Air reaches the lung segment where the clot is lodged, but gas exchange doesn’t occur because no blood is getting through. Large clots can be fatal immediately.

Should you develop dyspnea, seek help and try to provide a good history of your symptoms.  Symptom history is very important in diagnosis and accurate diagnosis is crucial to proper treatment. The goal of treatment, of course, is a return to the comfortable lack of awareness of breathing that should accompany you from cradle to grave.

Epidemic Fear

   “How many valiant men, how many fair ladies, breakfast with their kinfolk and the same night supped with their ancestors in the next world! The condition of the people was pitiable to behold. They sickened by the thousands daily, and died unattended and without help. Many died in the open street, others dying in their houses, made it known by the stench of their rotting bodies. Consecrated churchyards did not suffice for the burial of the vast multitude of bodies, which were heaped by the hundreds in vast trenches, like goods in a ships hold and covered with a little earth.”                       -Giovanni Boccaccio, 1313-1375

Conjuring up fear about epidemic infectious illnesses is easy. First bring up the black death that swept the European continent in the middle ages. A little bug wiped out half the population. Fast  forward to the Spanish Flu of the early twentieth century. That one was a bird flu that made the jump to humans. Then dip into the African continent where the fiendish Ebola virus rises up periodically and passes easily among villagers, killing virtually everyone infected.  And finally move onto SARS, other corona viruses,  mad cow disease, AIDS, and flesh-eating bacterial infections. The complacency of the last seven decades of antibiotic and immunization successes succumbs easily to visions of new horrors, which happen to sell well in the crisis-oriented media.

The trick to dealing with the fear of epidemic illnesses is to separate substantiated facts from breathless commentary, identify things within the sphere of your influence,  learn what you can and cannot do about them, do those things and quit worrying about the rest.  Worry, after all, undermines the immune system, which is the first line of defense against infections of all kinds.

Many of the infectious horrors trumpeted in the press are, for the time being, hypothetical worries that depend on things that might happen, but have not yet and may not ever.  That is not to say that our leaders shouldn’t have plans for an epidemic requiring difficult decisions about allocation of resources or for immunizing large numbers of people as fast as possible. But for the average individual trying to lead as healthy and happy a life possible, attention has to go to the “worth-worrying-about category,” – bacteria and viruses likely to be encountered and about which there are things to do to diminish the risk of allowing them to set up shop in the body. 

Examples of the “worth-worrying about” category

Three examples of organisms in this category are  two different bacteria, MERSA (methicillin resistant Staphylococcus aureus) and clostridium difficile, and the “flu” viruses – influenza type, other upper respiratory viruses that travel in the same circles (corona viruses included here).  Ironically, the two bacterial enemies have set up shop in our health care facilities, making trips to the hospital risky ventures for reasons more than whatever brings you there in the first place. The SARS virus did most of its interpersonal traveling in health care facilities, and currently the new coronavirus is most lethal in chronic health care facilities.  So, barring bad luck,  it is also worthwhile keeping yourself healthy enough to stay out of these places.

MERSA in hospitals – invader of wounds

MERSA first appeared in 1961, two years after the introduction of methicillin, an antibiotic designed to counter bacteria which had become resistant to penicillin. Because bacteria reproduce by the billions, the lucky few that are naturally resistant to antibiotics like penicillin generate millions of equally resistant offspring like themselves in short order. Nevertheless, it took many more years of widespread antibiotic use to spread the methicillin resistant strains around the world. Now they are well entrenched, and account for 40% pf the hospital acquired infections. They travel around the hospitals and nursing homes on the hands and in the noses of health care workers, 40% of whom are “carriers,” and they live on the surfaces of blood pressure cuffs and computer keyboards, waiting to hitch a ride on a hand. Good hand-washing practices are very effective in reducing infection rates, but compliance is surprisingly difficult to achieve. Hospitals in England are contemplating re-instituting the practice of having a matron on each ward to oversee the hygiene practices of doctors, nurses, technicians and patients.

MERSA in the community – boils and other skin infections

MERSA has appeared in the community as well, and it is becoming difficult to tell which bacterial strains originated in hospitals. Typically, the infections caused by MERSA in the community are skin abscesses and inflammation around hair follicles. They afflict people who live in close quarters or share dressing. Prisons, barracks, locker rooms, and communal bathing facilities have all been implicated. While the scary stories told about MERSA have involved rapid deterioration from a quick spread of bacteria along the lines of the connective tissue in an extremity (necrotizing fasciitis), or in the lungs, these cases are rare. The development of a pus-containing, red lump on the skin, around a hair follicle or not, is the most likely presentation, and often can be cleared by a surgical drainage of the abscess.

What can you do to avoid this bug? Take care of any skin breaks promptly, by cleaning them with soap and water and peroxide, and covering them until they are sealed over. Regular baths or showers with good attention to the hair covered areas not only keeps the bacteria count down, but makes you aware of any areas of inflammation, especially if you have been in locker rooms. Keeping sports equipment and clothing clean and dry, especially pieces that come into contact with skin. Alcohol based cleaners are the most effective.

Clostridium Difficile – invader of the colon

Another bacteria making the rounds of health care facilities affects the colon and produces a very nasty smelling diarrheal illness that prolongs hospitalizations, or triggers re-hospitalizations when it appears after a patient has been sent home, in addition to spreading outside the health care setting.  Clostridium difficile is aptly named because ridding hospitals of it has been difficult.  This bacterium is not a stranger to the colon – over 50% of infants carry it without any symptoms. But when a patient has been taking antibiotics for other reasons, the normal bacterial population of the colon suffers and allows Clostridum D. to move in and irritate its lining,  producing diarrhea that in turn requires more antibiotics, which will gradually produce more antibiotic resistance.  For the time being C.difficile is still responsive to a variety of antibiotics, and to fecal transplants,  but before a patient is adequately treated, his illness spreads the organism further and other sick patients are most at risk.  As in MERSA infections,  excellent hygiene practices are key to not transmitting clostridial infection.

Flu viruses and other colonizers of the airways

Viral  “flus” and upper respiratory infections come around each year in different forms, which may or may not be susceptible to the current vaccines. Vaccines are best guesses as to the from the flu virus will take for the year. Immunization helps protect some people, and is generally recommended for the elderly, the very young and the chronically ill. Because the flu is spread through respiratory droplets, the actions required to minimize the spread of any particularly virulent strain of  viruses – the kind that caused the Spanish flu, for instance – depend on an educated and responsible public. Staying out of crowded places, keeping hands away from mouths and noses, adhering to rigorous hand-washing with soap and water before meals and after contact with others, covering mouths with the crook of the elbow when coughing and sneezing, careful washing of food, utensils, countertops, and door handles and use of face masks in public by sick people are all effective ways of curtailing the spread of all respiratory illnesses including the common cold.

Public Defense

The more the public becomes practiced in good hygiene and avoids unnecessary antibiotic use (viruses do not respond to or require antibiotic treatment), the more robust a community’s response to  the inevitable breakout of a viral infection will be and the better chance we have of not increasing the numbers of our antibiotic resistant bacterial enemies.  Good hygiene also includes maintenance of good general health habits – diet, sleep, and exercise –  to keep the immune system primed to ward off invaders and keep individuals out of the chronically ill groups that are susceptible to epidemics when they hit.

You cannot cram for good health but you can keep chronic health problems at bay with slow, steady discipline, a worthwhile endeavor since infections are always worse when other health problems such as diabetes complicate them. Your immune system functions best when you are rested, unstressed, well- nourished, and well-exercised, and exposed regularly to the natural world and sunshine (better than Vitamin D supplements). All of these things are within your sphere of influence and good antidotes to epidemic fear.

What is Blood Pressure?

     Blood pressure is like the water pressure in your house. The major difference is that spigots in the house open the water to runoff. Unless you start bleeding, your plumbing is a closed system under constant pressure, with a pump at the center that keeps the blood moving through the pipes. The heart pumps blood into the aorta producing systolic pressure, the top number in your blood pressure measurement. This force pushes the blood through a progressively branching network of thick-walled, elastic arteries throughout the body – the arterial side of the circulatory ystem. The branches get smaller and smaller and beyond the smallest arteries, called arterioles, the pressure wave dissipates as the blood flows into a vast network of tiny, thin-walled capillaries, with diameters so small that microscopic red blood cells line up in single file to get through.  Press hard on one of your fingertips, enough to make the skin pale, and then let up and watch it grow pink again. You are watching a capillary network fill.

    In this capillary network, where pressure in the closed system is the lowest, all your cells exchange their waste products for fresh supplies of nutrients and oxygen. From capillaries, blood flows under low pressure into thin-walled veins and back to the heart. This is the venous side the circulatory system. Between heart beats, a time called diastole when the heart rests and blood pours into it from the venous system, the pressure in the arterial side of the system is at its lowest. This diastolic pressure in the arterial system is the bottom number in your blood pressure measurement.

        A house’s pipes are fixed in size and shape. The body’s plumbing is more sophisticated. The muscular walls of the arteries respond to signals from hormones and nerves, with dilatation and constriction necessary to shunt blood to locations where it is needed. When you have a full stomach, your limb muscles give up some of their blood supply (hence the old adage about not swimming right after eating). A good scare reverses this pattern, leaving the stomach queasy and preparing the muscles to fight or flee.  In cold environments, blood is shunted to vital organs in the head and torso at the expense of the skin and extremities – the reason that wearing a hat will keep your fingers warmer.

Blood pressure is thus a constantly changing measure of the force of blood flow within the arteries. It goes up with physical activity and comes down with rest. High or low, the pressure is a complex response to the demands placed on the body by activities, emotions, and environment. It is influenced by nutrition and hydration and other health factors. Genetic makeup, as always, plays a role and steers many people toward high blood pressure or hypertension, as they age.

In a small number of cases, hypertension is secondary – a response to an underlying problem (adrenal gland tumor, congenital abnormality of the aorta, narrowing of a renal artery, or genetic endocrine gland problem). In 95% of cases, hypertension is essential – a response to multiple factors that have in common an ability to increase resistance in the smallest arterioles, which forces the heart to pump blood under higher pressure.

Essential hypertension affects an estimated 70 million Americans. Repeated  resting blood pressure measurements,  over 140/90, without any evidence for an unusual cause, put a patient in this category (more recently some experts are recommending that the number be 130/80, but there is controversy over the subject). Over many years, blood pressures consistently above 140/90 cause slow “end-organ” damage – kidney failure, strokes, hardening of the arteries, retinal damage, and heart failure. The higher the blood pressure, the more the arteries thicken and harden, and the harder the heart has to pump to keep the blood flowing. The more the blood vessels change, the more likely they are to block blood flow, or to rupture, like corroded pipes in a house. And the more rigid they become, the worse the blood pressure gets, especially the systolic component.

How do you know if you have high blood pressure? Symptoms are rare until end organ damage is well underway, so you must depend on routine measurements, and sort out whether or not the anxiety produced by the measuring process is a culprit in raising the pressure. This sometimes means getting a home measuring device, or at least getting repeated checks in an environment away from a doctor’s office. Severe hypertension, with diastolic pressures of 140 or more, can produce headaches, dizziness and blurred vision and is a medical emergency – fortunately uncommon.

Of the numerous factors correlated with essential hypertension, age and family history are the most common and the least “treatable.” But the other common factors – inactivity, obesity, excessive salt intake (greater than 5.8 gms/day), lack of sleep, and excessive alcohol intake – help time accomplish its negative work. These factors, at least, are under some voluntary control, and the platform of treatment of essential hypertension is diet and exercise. For every 25 lbs of weight lost, blood pressure can drop about 3 points. Regular, vigorous aerobic exercise stimulates capillary expansion to accommodate the demand for blood by the nervous system and muscles.  Thirty to 45 minutes of daily aerobic exercise yields drops of 5-15 mm, and helps normalize weight. Removing the salt shaker from the kitchen and minimizing processed food drops daily salt intake.

Even with the best of lifestyles, anti-hypertensive medicines are sometimes necessary.  Each patient’s health picture determines the best options among the many available drugs. The mainstays of treatment affect the kidney hormones renin and angiotensin (ACE inhibitors), or block the effects of the autonomic nervous system (beta blockers), or help the kidneys release more salt (diuretics). Very often, combinations of two or even three drugs work better than one alone.

Because hypertension produces no symptoms, and its consequences lie far off in the imagined future, sticking with a treatment plan is often difficult. Achieving diet, weight and exercise goals and finding the best drug regimen with the most tolerable side effects require education, patience and commitment, without any obvious rewards (beyond seeing a lower number on the blood pressure monitor)  – just like many of the most worthwhile things in life.

What about Meditation?

People skilled in meditation can certainly lower their blood pressure at the time they are practicing the discipline, but blood pressure returns to baseline when they return to routine activity. If the practice of meditation encourages mindfulness in other areas of life it may well decrease anxiety, reduce tension,  and  improve the self-discipline necessary for dietary restraint, regular exercise, and sufficient sleep – indirectly helping with blood pressure control.

 

 

No more posts.