Sleep Debt: The Hidden Costs

Everyone has a sleep bank. Each night your accounts get credited with 7-8 hours of the physical and mental benefits of sleep and each day the accounts pay out those benefits in the form of emotional, intellectual and physical energy. Just like in any bank account, withdrawals can’t exceed deposits without incurring debt. Sleep debt, though, is easy to ignore because physical activity keeps alertness high. As long as you move around instead of reading or watching TV, you won’t nod off and you can keep thinking that 5 or 6 hours of sleep a night meets your needs. But covering the debt with activity is like keeping a bank balance out of the red by borrowing money and paying interest. Sleep debt exacts a toll on the body that goes beyond depressed mood, irritability and lack of ability to concentrate and learn, not to mention the potential for causing motor vehicle accidents.

The biological clock

As sleep debt mounts, the body’s biologic clock goes awry. This clock, located deep in the brain, controls circadian rhythms – regular ups and downs in behavior, body temperature, appetite, hormone production, alerting mechanisms, and the urge to sleep. When the clock malfunctions chronically, the results show up in the form of weight gain, high blood pressure, diabetes and diminished immunity to infection.

Setting the clock

Regular periods of darkness are required to set the brain’s internal clock to keep the body in synch with the 24-hour day set by the sun. Sleep researchers have shown that, when living in a research setting where there are no external clues about time of day or night, subjects’ internal clocks actually work on a 25-hour cycle. Normal peaks of sleepiness and alertness work themselves into the wrong time of the  24-hour day and night outside the sleep lab, producing weeks of daytime sleepiness and nighttime insomnia in the research subjects. Over time, the peaks cycle back into synchrony with day and night producing several weeks of normal daytime alertness and nighttime sleepiness.

Laboratory settings may exaggerate these patterns, but most people know that during some weeks they simply perform better during the day and sleep better at night  than during other weeks, indicating that in the modern, artificially lit world, the 24-hour day is more like a 24-25 hour day as far as the body’s natural rhythms are concerned. This clock drift is very sometimes very evident. Cyclical insomnia and daytime sleepiness are in common in blind people, in people at very high latitudes where the summer sun circles the sky for almost 24 hours, and in shift workers who are up all night in brightly lit environments. These problems, while distressing, respond to maintaining regular sleeping schedules and closing out all light during sleep periods, which resets the clock.

Why the clock matters

The internal clock is easily disrupted by one or two day episodes of sleep deprivation that people experience for reasons as varied as extra work loads, exams, brief periods of emotional upheaval, or any of the other myriad problems that keep people awake, but studies have repeatedly demonstrated that a few days of “catching up” on sleep restore the body to normal rhythms, contributing to a widely held impression that sleep deprivation, while responsible for serious accidents, doesn’t cause real health problems.
However, bigger problems do come from disturbing circadian rhythms more chronically. In recent years research attention has shifted from short term sleep deprivation to the chronic, partial sleep deprivation that is so common in our modern society, where nodding off during monotonous and sedentary activities like reading or watching TV are almost expected. Many people think they need no more than 5-7 hours of sleep at night, but while a few truly short sleepers exist, most people require around 8 hours of sleep each night to achieve maximal alertness throughout the day. Chronically shortchanging sleep by even an hour a day changes the timing and levels of multiple hormones, causing other metabolic changes and weakening the immune system.

Lack of sleep wreaks havoc on hormones

One of the first hormonal changes produced by chronic short sleep involves cortisol, the stress hormone produced by the adrenal gland. Normally cortisol levels decline during late evening hours, but without enough sleep, production continues unabated, Cortisol then begins to contribute to immune stress and to insulin resistance, which leads to diabetes and fat deposition. A second contributor to insulin resistance is a change in growth hormone secretion from one large burst during sleep to two, smaller bursts before and after sleep. A third change comes from failure of the pituitary gland to produce its normal night-time rise in thyroid stimulating hormone, the stimulus for the thyroid gland to produce more thyroid hormone. All of these changes are consistent with the fact that as little as one week of 4 hour sleeping nights can convert healthy young people to a pre-diabetic state. Observational studies do show higher rates of diabetes in chronically sleep-deprived women.

Lack of sleep and obesity

If these hormone changes are not enough to convince a short sleeper to turn out the lights earlier, studies on the appetite influencing hormones leptin and ghrelin, produced by fat tissue and the stomach respectively, might help. Leptin, which signals when to stop eating, diminishes markedly after 6 days of four- hour sleeping nights, despite no change in caloric intake. Ghrelin, which stimulates appetite, particularly for high carbohydrate foods, goes up when sleep is short.

Sleep debt is all around you

    All of these hormonal factors are significant in society where people lead overscheduled lives in stimulating, loud and bright environments without regard to natural day and night. We do not need sleep studies to tell us that we are in an age of significant sleep debt – just count the number of people, including children, asleep on planes and buses, over books and newspapers, and on couches in front of TVs. If you fall asleep regularly under these circumstances, you are in chronic sleep debt. Given the increase in obesity and diabetes over the last few decades, sleep is another potential therapeutic avenue – a fruitful and inexpensive area of health over which we have considerable control.

Managing the sleep budget: factors under your control

Environmental
1. Take the television out of the bedroom.
2.Darken the room completely, or wear a comfortable, opaque eye mask.
3. If noise is a problem were soft ear plugs.
4. Keep the temperature low at night and invest in a comfortable mattress that does not move.

Behavioral
1. Keep the biologic clock in sync with the sun by getting outside regularly.
2. Get regular exercise like walking, but avoid exercise in the last 3-4 hours before bedtime.
3. Keep naps short – 45 minutes or so – and confined to early afternoon hours.
4. Avoid heavy meals and alcohol in the last 4 hours before sleep.
5. Aim for the same bedtime every night, well before midnight, and develop a quiet bedtime ritual

Internal factors
1. Empty your bladder right before getting in bed.
2. Seek medical treatment for heartburn if causes frequent awakening. Ditto for urination.
3. Evaluation for sleep apnea is a must for someone who snores and suffers from daytime sleepiness.
4. Treatment of arthritis with exercise, physical therapy and medications, if necessary.
5. Try to get weight down to normal: sleep apnea, heartburn, and arthritis pain all benefit

Fatigue: Gentle Messenger…and Tyrant

As Supreme Court Justice Potter Stewart famously said, when confronted with a decision about what constituted pornography, the definition is hard, but “I know what it is when I see it.” An all-encompassing definition of fatigue is similarly difficult, but everyone knows what fatigue feels like. The profound lassitude that signals an oncoming flu is a gluey, mesmerizing state of mind and body that renders one incapable of remembering ever feeling good, of imagining ever feeling energetic again, or of conceiving of a desire to participate in any physical, social or mental activity beyond crawling beneath the bedcovers.  

The perception of energy failure

 Where there is life, there is fatigue. All plants and animals run on energy produced in little chemical factories (mitochondria) in every cell. The ultimate source of biologic energy is the sun’s nuclear energy, converted to usable form by plants and transferred to animals as food. The more complex the living thing, the more obvious the need for periods of rest and recovery to replenish energy. When the demand energy use outpaces the time needed for recovery, or when normal function is derailed by illness, drugs or toxins, fatigue is the name we give to what we feel, mentally and physically. To the research scientist, fatigue is a by-product of numerous little proteins (cytokines) produced by the immune system to protect us from outside invaders and internal disorders like cancer. How these proteins create the feeling of fatigue is a mystery, but there is admirable logic in a system that commandeers a patient’s energy, drive and ambition and sends him packing off to bed while an internal battle rages.  

Voluntary fatigue

Less admirable is our ability to override the biology that produces tiredness, and to become passive, cranky and sleep-deprived. In fact, most complaints of fatigue reflect the deliberate choice to ignore the symptom and would and yield to simple lifestyle changes – if one were willing and able to sleep more, lose weight, eat regular, well-balanced meals, exercise enough, manage time wisely, avoid smoking, excess alcohol, and junk food, and engage in satisfying work. In our culture these are tall orders, and a background level of fatigue is often accepted as normal. 

Evaluation of fatigue 

New, unexpected and persistent tiredness, however, may signal underlying illness or environmental stress and warrants a serious evaluation, with clear communication about exactly what fatigue means to the patient. First, a description of the patient’s normal “background energy” is important. Some people are full of energy from the day they are born. Others are inveterate couch potatoes, happy to sit and watch life go by. The feeling of fatigue that prompts one to see a doctor is, by definition, different from the patient’s normal state, but the doctor sees only a snapshot in time. Patients and families should never be shy about volunteering information about what life used to be like. 

Defining the symptom

Next, the language used by patients to describe fatigue needs to be clear. “I’m tired” sometimes means “I’m weak,” and “I’m weak” sometimes means “I’m tired,” but in the jargon of medicine, weakness means loss of muscle strength. Provided that they exert full effort, tired people can generate normal muscle power upon request, but people with strokes or nerve and muscle diseases cannot. Separating weakness from fatigue is the doctor’s first job – otherwise he may head off on the wrong diagnostic road. Description of the activities affected by tiredness and/or weakness, and characterization of changes fatigue brings to daily life are crucial to the process of diagnosis.   

Finding the source

Once a doctor understands the way fatigue affects life for a patient, he moves on to a “review of systems” – a top to bottom list of questions ranging over all the body’s organs, looking for clues to the presence of heart, kidney or liver disease, diabetes, cancer, sleep apnea, restless leg syndrome, insomnia, degenerative neurologic diseases like Parkinson’s, autoimmune illnesses like lupus or MS, chronic infections, eating disorders and problems of the thyroid, adrenal and pituitary glands. A good doctor will then delve into the lifestyle and life events surrounding the appearance of fatigue. Tiredness is a complex, high level symptom that may also originate in the mind – it is one of the cardinal symptoms of depression. 

Is it the drugs

Next comes a careful inventory of all medicines in use, prescription and non-prescription. New fatigue symptoms may parallel the addition of new drugs (even antibiotics can cause fatigue). An inventory of potential toxins and hazards in the environment may turn up a faulty furnace producing carbon monoxide or exposure to toxins such as volatile hydrocarbons that can damage the part of the brain called the cerebellum – a major player in energy balance. 

Following the clues

 Following a good, inquisitive medical history, a complete physical exam (the kind that requires undressing) may turn up other clues that suggest the need for more than “routine” tests. Fatigue is messenger bringing information about conditions ranging from minor to mortal. When not readily explained, fatigue warrants the best of our medical tools to ferret out the source of trouble. The first step though, is still a careful history and physical examination. Without these, advanced medical technological evaluation of fatigue is little better than a fishing expedition sent to sea with no information about where the fish hang out. 

                                                    The Chronic Fatigue Syndrome

Definition:

Profound, life-altering fatigue lasting more than 6 months.

May follow a viral infection, but no test abnormalities persist along with the fatigue.

Physical and mental activities both worsen symptoms.

Variety of accompanying symptoms: weakness, muscle and skeletal aches and pains, impaired memory, lack of drive, poor sleep.

Diagnosis:

No specific tests, other than exclusion of other illnesses that produce these symptoms, among others. CFS is a “diagnosis of exclusion.”

Conditions to be excluded:

Chronic infections, mononucleosis, autoimmune disorders (lupus, M.S.), hypothyroidism, low adrenal function, sleep apnea, cancer (particularly pancreatic), obesity, eating disorders, drug and alcohol abuse, major psychiatric disturbances: schizophrenia, depression. 

No more posts.