The Problem with Sugar: Insulin

This article is about insulin, not diabetes. Diabetic or not, you need to know about insulin. My epiphany about the importance of this hormone occurred when one of my children brought Micah, a friend with Type 1 diabetes, home for dinner. We had a healthy “Mediterranean” dinner – pasta tossed with olive oil, chicken, fresh tomatoes, and cilantro, with accompanying salad and French bread. And birthday cake.  Fresh from life in a college dorm, the young friend ate with gusto – at least two helpings of everything. We all did.  Later, I found him groggy and in need of two to three times his normal insulin dose. The epiphany was this: all the non-diabetics at the table that night required a lot of insulin to cover hefty carbohydrate intakes, but we were blissfully unaware of the consequences of over-indulgence. We did not have to fill syringes with extra insulin. Our pancreases did the work behind the scenes.

Awash in Insulin

Why was this realization an epiphany? Because we live in an age of excess, consuming large amounts of refined carbohydrates and frequently eating more than our energy requirements demand.  We are awash in insulin of our own making and need to understand this hormone’s central role in metabolism. More and more research links insulin to the chronic diseases of civilization: high blood pressure, heart disease, obesity, and Type II diabetes (the variety in which insulin is too plentiful and doesn’t work properly, as opposed to Type I, in which the pancreas fails to produce insulin).

How insulin works

Insulin is the hormone that moves sugar from the blood into all the body’s cells. Blood sugar comes from carbohydrates in food and from glycogen made by liver and muscles as a way to store a twelve-hour supply of sugar. When glycogen stores run out and little food is coming in, as in starvation or very low calorie diets, we make sugar, first from our muscle proteins and then from our fat.  The main goal of all metabolism is to keep blood sugar in a tight range – just right for the brain’s needs, because sugar is the only fuel the brain uses under normal circumstances. (It will resort to using ketone bodies, formed from fat in the liver during prolonged fasting or total carbohydrate restriction, but if sugar is available it is the preferred fuel).

Incoming dietary sugar elicits a burst of insulin from the pancreas. Insulin’s job is ferry the needed sugar to cells and to squirrel away extra sugar as glycogen and fat. Insulin is a lipogenic, or fat-producing hormone. Every time we overindulge, insulin goes into high gear to produce fat. It also raises triglyceride levels and lowers high density lipoproteins, exactly the changes in blood lipids that are associated with heart disease.

When insulin fails to work

Insulin is also mysterious. For unknown reasons, many people –   one in every three of us – have a tendency to become “resistant” to insulin’s effects. Their pancreases put out more and more insulin to handle routine blood sugar levels. No one knows what makes the insulin inefficient, though fat accumulation in muscle cells may be part of the problem.  This stage of “insulin resistance” goes unnoticed for years because there are no symptoms. Blood insulin levels are expensive to measure and difficult to standardize, so they are not part of any kind of routine, preventive screening.

Insulin promotes fat storage

High levels of insulin make fat storage and weight gain easier. Weight gain, particularly around the middle, promotes insulin resistance, and the pancreas responds with yet more insulin. A vicious cycle is underway.  Insulin resistance can become so pronounced that blood sugar escapes control and spills into the urine. Insulin resistance is now Type II diabetes, treated with medicines that help insulin work, and ultimately, with shots of yet more insulin.   Before this happens, and even afterwards, weight loss and exercise can reverse insulin resistance, leading medical researchers to believe that insulin resistance has something to do with abnormal energy processing in muscle cells. They’ve found that the muscles of some lean, healthy relatives of Type II diabetics show insulin resistance long before there is any fat in muscle, or abnormality in blood insulin levels.

Epidemic

In our sedentary age of super-sized, sugar-laced, low fiber meals, we produce far more insulin than our ancestors did. In addition, the genetic make-up of many people, particularly Hispanics, Native Americans and some African-Americans makes their insulin less effective.  We don’t measure insulin levels routinely. Instead, we concentrate on easily-measured cholesterol and fret about fat in the diet. At the same time we are in the middle of an epidemic of insulin resistance and on the verge of an epidemic of Type II diabetes, which is no longer just a disease of middle and older age. For the first time in history, type II diabetes is appearing regularly in children, teens and twenty year olds.

The average American fast food diet sets people on the road to obesity, insulin resistance and type II diabetes.  Lack of exercise keeps them there.In a world of easily available food that requires little or no work, the only defense against overeating is mental.  Education and self- discipline are the weapons. Insulin-requiring, Type I diabetics like Micah know how much insulin has to be paid out for a big meal. The rest of us have to visualize that syringe full of extra insulin and imagine tucking away excess calories as fat. We have to see ourselves requiring more and more insulin as time goes on and becoming unable to produce enough to meet the needs of an insulin resistant body. It’s enough to make that second helping seem less desirable and regular exercise more attractive.

Keeping insulin levels under control:

  1. Avoid weight gain
  2. Lose any extra weight
  3. Exercise 30 minutes per day.
  4. Eat regular, small, balanced meals, and 25-30gm/day of fiber
  5. Avoid the “white stuff:” Flour, sugar, white rice
  6.  If you are overweight and/or have relatives who have diabetes do all the above, and see if your doctor thinks a glucose tolerance test is warranted.

 

 

 

 

 

 

The Sweet Tooth: Pathway to a Broken Heart?

For the last half a century or more we have believed the dietary cholesterol theory about heart disease, a hypothesis (idea to be tested by experiment) that found favor with researchers, grant makers, doctors and drug makers. What if this theory is wrong? What if cholesterol in artery walls has less to do with dietary fat than with the way the body processes carbohydrates? What if refined sugars and grains are the dietary culprits? Could insulin, the master hormone at the center of all energy processing, be a better marker than cholesterol for heart disease?

What is blood sugar?

The first thing to understand about sugar is that the blood sugar is not the same thing as the sugar in your pantry. Or the sugar in soft drinks or the sugar in fresh fruit. Blood sugar is a simple molecule called glucose – a product of plants’ ability to convert the energy of the sun into starches, long chains of glucose linked together. When you eat a starch, the digestion process breaks down the chains into simple glucose molecules which circulate in your blood. Glucose is used by every cell in the body for energy, and is also made into glycogen for storage in liver and muscle.The sugar in your pantry is sucrose extracted from plants, specifically cane grasses and beets, by a refining process that concentrates and crystallizes it. Each sucrose molecule is a combination of one glucose molecule with another of fructose, a chemically different plant sugar molecule.

The taste for sweetness is innate and possibly addictive. Before the advent of refined sugar, indulging the sweet tooth was difficult. The only edible sources were berries and fruits and small amounts of honey guarded by nasty bees – all confined by climate and geography. Sugar made its way into the human diet slowly, spreading from the East to the West as the secret of this “liquid gold” made its way along routes of commerce.

Sugar and the diseases of civilization

With time and commerce, consumption of sugar and refined grains skyrocketed. The diseases of civilization – diabetes, heart disease and obesity – followed refined sugar, flour and rice around the world, appearing wherever old dietary staples were replaced by these “white” foods. By the 1920s, the Americans averaged 110-120 pounds of sugar per person per year. We inched up to 124 pounds by the late 1970s. Then came the Japanese chemical innovation that made high-fructose corn syrup (HFCS) a dietary staple. By 2000, HFCS bumped sugar consumption up to 150 lbs. per year, largely in the form of sweetened drinks.

High fructose corn syrup 

HFCS differs from sucrose because the ratio of fructose to glucose in corn syrup is 10% higher than in table sugar – 55:45 instead of 50:50. Some scientists believe that it is the remarkable increase in fructose consumption in modern times that correlates with the appearance of the metabolic syndrome – abdominal obesity, high fasting blood sugar, high triglycerides, abnormal lipoprotein levels and high blood pressure. If so, a 10% increase in fructose combined with a recent, large jump in overall sugar consumption may spell real trouble.
How can fructose cause trouble? Isn’t it the primary sugar of fruits? Yes, but eating an apple with a small amount of fructose combined with absorption-slowing fiber hardly nudges blood sugar up – a far cry from the blood sugar spike after 20 ounces of an HFCS sweetened beverage. Drink a coke, and about 60% of the glucose in the HFCS goes directly into the blood for immediate use, and 40 % into the liver for storage as glycogen. The fructose all goes to the liver for conversion into fat – released into the blood as triglycerides. The higher the fructose in the diet, the higher the triglycerides in the blood. Fructose is a “lipogenic” or fat-producing sugar, and long term consumption also raises LDL or bad cholesterol.

The problems with too much sugar

Once sugar consumption exceeds the small amounts nature provides without refining techniques, trouble begins. The different ways the body processes fructose and glucose combine to produce very efficient fat production. A rise in blood glucose prompts the pancreas to put out insulin to help ferry glucose into cells for energy use or storage. Insulin, like fructose, is “lipogenic” because it helps move fats into storage depots in three areas – the liver, fat tissue, and the walls of arteries. And as triglycerides are formed from fructose, insulin busies itself shuttling them around the liver and out into the blood. The pancreas then produces even more insulin to take care of the glucose – this is the phenomenon known as insulin resistance, part of the metabolic syndrome associated with heart disease.

Is it the cholesterol or the sugar?

The theory that cholesterol in dietary fat is the direct cause of cholesterol deposits in arteries requires a leap over the metabolic pathways that process simple sugars and are intimately involved in fat formation and storage – and over the fact that many people with low cholesterol levels have heart disease. Over the last half century, many researchers and doctors made the leap because they believed the theory. Just as important to widespread acceptance, though, were less scientific influences like the cheap availability of a test for blood cholesterol, the difficulty and expense of measuring insulin, and the dominance of researchers devoted to the dietary cholesterol theory over those who questioned it.

Medical history books contain an embarrassing array of once-unassailable theories and practices that have fallen by the wayside. Despite a modern sense of scientific invincibility, current medical ideas are not immune from error. Sugar and refined carbohydrates are not yet the poster children for the scourge of heart disease, but they may be a far better target than cholesterol. If the dietary fat theory gives way to the sugar theory, the massive push to lower cholesterol by diet and drugs may go into the books as one of those once-unassailable ideas that eventually fell.

No more posts.