Over the Counter Pain Relief

Pain stayed so long, I said to him today

“I will not have you with me any more.”
I stamped my foot and said, “Be on your way,”
And paused there,
Startled at the look he wore.
“I, who have been your friend,” he said to me.
“I, who have been your teacher,
All you know of understanding love,
Of sympathy and patience I have taught you.
Shall I go?”   

Author unknown

Pain is a friendly messenger, carrying news from the frontiers of the body to the command center of the brain. Like the messages traveling across telephone wires, pain is just a series of electrical impulses traveling up nerves. The brain sorts the electrical impulses and presents them to you, the conscious mind inside, as a coherent story about what’s going on down below. Sometimes the message triggers an immediate reflex action, like pulling a hand away from a hot stove, even before your mind grasps the problem.

How is pain relieved?

Relief from pain depends on stopping the electrical impulses carrying the pain message or on altering the way the brain puts the message together. Every drug or procedure used in pain treatment works on either the simple electrical message, or on its complex interpretation by the brain. Ultimate relief comes when the conscious mind disappears into sleep, which is of course the great achievement of general anesthesia. Consciousness is the barrier to complete relief of severe pain.

Most pain, however, is not the severe unremitting variety that requires treading the fine line between consciousness and oblivion. Most pain comes in an acute form that gets us to the doctor for treatment of a sudden illness, or in a chronic form related to our heads or our skeletons. Thousands of years ago Cicero made the distinction: “All pain is either severe or slight; if slight, it is easily endured; if severe, it will without doubt be brief.”

Willow bark – the first pain medicine

Time and chemistry have given us surgery, anesthetics, antibiotics and narcotics – life-savers for diseases heralded by severe pain. They have also given us lesser drugs for lesser pains, a long process beginning in the 5th century BC when Hippocrates recommended chewing the bark of the willow tree to relieve pain and reduce fever. A long line of chemical derivatives of the willow bark’s salicilin culminated in a stable powder patented and marketed in 1899 as aspirin, the world’s first synthetic drug. Aspirin launched the world’s pharmaceutical industries.

Anti-inflammation and pain

Inflammation causes pain and the purpose of the pain is to get you to attend to whatever is causing the inflammation. Pain relief from aspirin is best understood in terms of its anti-inflammatory effects, but the drug has multiple other biochemical properties, many still being discovered. One effect, on an enzyme involved in the production of chemicals that produce inflammation, led to the development of ibuprofen and its cousin naproxen. These newer drugs, non-steroidal anti-inflammatory drugs (NSAIDS), are mainstays in the treatment of the aches and pains of daily life.  Anti-inflammatory steroids like prednisone are far more potent and used only when their risks are balanced by the seriousness of the problem under treatment.

Tylenol is not an anti-inflammatory drug

Tylenol, or acetaminophen, is commonly thought to be just like aspirin, but it is chemically unrelated, has no anti-inflammatory effects, produces no gastric upset and doesn’t affect blood clotting. It reduces fever by a direct action on the brain, but no one knows how it reduces pain. The pain-relieving properties of aspirin and the NSAIDS, apart from their anti-inflammatory effects, are also poorly understood. It is possible that they decrease pain perception in the mind, but if so, no one understands how.  They are most effective after an acute injury, after simple surgical procedures, or with infrequent headaches (relief here is also of unknown mechanism).

Frequent analgesic use can increase pain problems

But what about pain of chronic conditions like osteoarthritis and frequent “tension” headaches, in which inflammation plays a lesser role? Much arthritic pain is from tightness and muscle imbalance. Gradual activity warms up joints and removes some of the discomfort. Exercise, heat, ice, massage, weight loss, stretching, Pilates, and yoga help minimize drug use in these chronic conditions. Frequent use of analgesics for headaches (more than once a week) actually lowers the threshold for headache triggers (like lack of sleep, alcohol, lack of exercise, stress, etc.)  and for pain perception, and often leads to a cycle of increasing drug use producing increasing numbers of headaches. This phenomenon is known as rebound headache and it highlights the importance of other methods of headache prevention and relief (adequate sleep, stress management, attention to diet and exercise, etc.).

Selling pain relief like candy

Since 1915, when aspirin became available without a doctor’s prescription, the sale of over-the-counter (OTC) pain relief has achieved the heights late Merck chief Henry Gadsden aspired to when he wished aloud 30 years ago that he could sell drugs to healthy people just like Wrigley’s sells candy and gum. These days, OTC pain medicines are so readily available that they seem as harmless as the candy next to them on the shelf.

Side effects

Unlike candy, OTC pain relievers have to be processed by the liver and kidneys. Chronic use can produce liver and kidney impairment, even failure of these organs. Chronic analgesic use damages hearing. Aspirin and other NSAIDS may erode the stomach lining; all but Tylenol impair blood clotting. Recent statistical studies resulted in withdrawal of two newer NSAIDS from the market because people taking them had more heart attacks than those on placebos. The problem also appears in statistical analysis of those on high doses of the older NSAIDS.

Don’t kill the messenger – heed it

Because no drugs are risk-free and pain is just messenger telling you about a problem, try to reserve the pill option for pain that interferes with sleep or truly inhibits you from carrying out the activities that are important to you. Attend to the causes of the message in as many non-pharmaceutical ways as possible. And remember that an analgesic “virgin” or infrequent user gets more out of a painkiller than an analgesic veteran.

A Primer on Steroids

Ask around among your friends and you will find that many of them, at one time or another, have been given “steroids” by their doctors. They have taken pills, inhaled the drugs, had injections, smeared creams on their skin, dropped liquid into their eyes, or received the drugs in an enema. They may have been treated for pain, swelling, rashes, cancer, slipped discs, vision problems, arthritis, colitis or vasculitis.  At the same time, you hear stories of athletes “doping” with “steroids” to enhance athletic performance and losing titles they won for having done so. You read ads for body building “steroids” and see the results in pictures of massively muscled men – and women. And sometimes you hear that testosterone, widely advertised for aging men, is a “steroid.” Are these all the same drugs? Yes, and no.  They are all manufactured versions of human steroid hormones.

What makes a steroid hormone?

All steroid hormones begin as molecules with the same core structure made from cholesterol. Various carbon, hydrogen and oxygen combinations added to the core make different chemical structures with different functions in the body. Those steroid hormones made in the testes and ovaries are called sex hormones. Those made in the adrenal glands are called corticosteroids and mineralocorticoids. Steroid hormones trigger a large number of different and vital chemical responses throughout the body.

Which steroids are used for which problems?

The steroids you hear about most frequently are synthetic versions of some of the adrenal glands’ corticosteroid hormones. Because they block immune system function, they are very powerful anti-inflammatory agents, commonly prescribed for allergic responses, autoimmune diseases, catastrophic situations involving trauma and shock, some cancers, and pain problems in which inflammation is thought to be the culprit. The steroids used for body building and performance enhancement are usually derivatives of the male sex hormones, or are nutritional supplements which are thought to increase the body’s own production of the male hormones.

Catabolic and anabolic effects: breaking down and building up

The first corticosteroids used in humans were animal adrenal gland extracts. They were lifesaving treatments for shock in people who had lost adrenal gland function. Incidental observations about their powerful anti-inflammatory effects propelled their widespread use and the Nobel Prize in Medicine in 1950 went to the men who elucidated their physiologic effects. With increased use, however, corticosteroids proved to have many serious long term effects because they are catabolic hormones, achieving their results by breaking down the body’s proteins and diverting them for different purposes.

The male sex steroids are anabolic hormones because they signal the body to build proteins. They have much narrower medical applications than the adrenal corticosteroids do. Anabolic steroids are useful in patients who have impaired male hormone production for reasons such as pituitary gland (the master gland) failure or testicular failure. But anabolic steroids are not medically needed in healthy people, and their use in amounts required to increase muscle mass above the body’s natural endowment courts significant risks. They are not medically available for healthy people. The male hormone testosterone is sometimes prescribed for men who have low testosterone levels later in life, with the aim of restoring libido and maintaining muscle mass, though there is some controversy about the risks versus benefits of this practice.

Powerful drugs with powerful side effects

Side effects of adrenal corticosteroids are related to the dose, delivery mechanism and especially to length of time used.  With oral and intravenous delivery, changes in glucose metabolism shift the pattern of fat storage in the body to the trunk, the neck and the face, producing the characteristic “moon facies” of someone treated with steroids over long periods of time, in relatively high does. Skin thins. Muscles shrink. Bones lose calcium and may fracture. Cataracts commonly develop. Insomnia and sometimes a form of mania signal brain effects. Suppression of the immune system, the source of the powerful anti-inflammatory effects of the corticosteroids, allows some infections to blossom. And very soon after steroid treatment starts, the adrenal glands begin to curb their own production of steroids, making stopping the drugs dangerous unless they are slowly tapered, a process that sometimes takes months.

Injections of corticosteroids into painful, presumably inflamed areas cause breakdown of the collagen structure of in connective tissue. Injections directly into tendons can cause enough degeneration at the site to lead to tendon rupture, causing some orthopedists to ban steroid injections anywhere near the Achilles tendon. Steroid inhalation for asthma and chronic obstructive lung disease is similar to topical use for skin problems – very effective at relieving inflammation, and not associated with much absorption into the body, so not as likely to produce adverse effects.

Some of the side effects of anabolic, male hormone steroids are related to their androgenic properties – the ability to produce and enhance male characteristics, and at the same time to shut down the body’s own production of testosterone in the testicles. Female users have deepened voices and develop acne and facial hair, but lose scalp hair. Males develop decreased sperm counts and shrunken testicles and also get acne and lose scalp hair (remember how many bald cyclists there were in the Tour de France during the height of the doping scandals?) But the most dangerous side effects are not visible: they include heart disease, liver cancer, anger, aggression and irritability and depression, as well as abnormalities in liver and kidney function.

Exercise caution in legitimate use of steroids and avoid illegitimate use

Alternate day dosing schedules for corticosteroids may help prevent side effects, as will the development of newer, more targeted versions of the drugs. But steroids should always be approached with caution, and used with great care. The most important things for doctors and patients to consider are the certainty of the diagnosis and likelihood that the condition will improve with less risky treatment. For instance, if orthopedic pain comes from muscular imbalance and not from inflammation, steroid injections will not help. If the condition being treated – say a bad case of poison ivy – will resolve with other types of care, steroid risks are unnecessary. Always remember that some severe steroid side effects can occur with just a few weeks use.

Sidebar: Case History illustrating Risk/Benefit Judgment in Corticosteroid Use

A 60 y.o. woman undergoes successful surgery for a benign brain tumor, but awakens with a paralyzed facial nerve, a well-known and feared complication of surgery in this type of tumor.  She has a severely drooping mouth and lower eyelid. High dose steroids over the next week reduce the swelling in the nerve, resolving the facial nerve paralysis. But the treatment also causes degeneration of the tops of the hip bones – a well-known steroid complication called aseptic necrosis. She then needs two hip replacements. Was the side effect worth the treatment result? In this case, most people would say yes. But if the steroid treatment had been for something that would have resolved with other treatment, the hip complication would have been much harder to accept.

No more posts.